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o Likelihood-free training
@ Training objective for GANs

mGin max V(G, D) = Expy,y,llog D(x)] + Ex~p¢llog(1l — D(x))]

@ With the optimal discriminator D}, we see GAN minimizes a scaled
and shifted Jensen-Shannon divergence

mci_n 2Dysp [Pdata7 PG] - IOg 4

@ Parameterize D by ¢ and G by 6. Prior distribution p(z).

min max Excy, 108 Dy ()] + Eqepie)08(1 — Do(Go(2)))]
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Selected GANs

@ https://github.com/hindupuravinash/the-gan-zoo
The GAN Zoo: List of all named GANs

o Today

Rich class of likelihood-free objectives via f-GANs
Wasserstein GAN

Inferring latent representations via BiGAN

Application: Image-to-image translation via CycleGANs
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https://github.com/hindupuravinash/the-gan-zoo

Beyond KL and Jenson-Shannon Divergence

Xi~Pyata Gem
i=12..,n

What choices do we have for d(-)?
o KL divergence: Autoregressive Models, Flow models

Model family

o (scaled and shifted) Jensen-Shannon divergence (approximately):
original GAN objective
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@ Given two densities p and g, the f-divergence is given by

Df(p. q) = Ex~q [f (58) ]

where f is any convex, lower-semicontinuous function with (1) = 0.
@ Convex: Line joining any two points lies above the function
@ Lower-semicontinuous: function value at any point Xg is close to

f(xo) or greater than f(xo)
//\;
R

° Jensen's inequality Ex~qlf(p(x)/q(x))] > f( Ex~q[p(x)/q(x)]) =
f([ a(x)p(x)/a(x)) = ([ p(x)) = f(1) =

° Example. KL divergence with f(u) = u Iog u
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f divergences

Many more f-divergences!

Name Dy(P|Q) Generator f(u)
Total variation 3 [p(z) — ()| dz dlu—1]
Kullback-Leibler J p(z)log "—H dz ulogu
Reverse Kullback-Leibler [ g(z log ( ) —logu
Pearson x? I M dz (u—1)2
Neyman x? I L&)#—D— dz Llu—“)g
Squared Hellinger (\/_.'t - \/q(_;r)2 dz (Vu-— l)2
Jeffrey [ (o(z) — q(z)) log (J—l) de (u—1)logu

Jensen-Shannon
Jensen-Shannon-weighted
GAN

a-divergence (a ¢ {0,1})

5 [p(z) logﬁgﬁﬁ(z+q(z)logyI tarm 4z

Jn( z)wlugm + (1 = m)a(z)log 7 (l;=lq<rl dz
fp(z) log %;)(7 +q(x) log 5345 dz — log(4)

= [ (¢@ [(23)" - 1] - ale@) - p(a))) do

—(u+1)log 1% +ulogu
mulogu — (1 - m + mu)log(l — 7 + wu)
ulogu — (u+ 1)log(u+1)
ﬁ(u”—l—a(u—l))
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Training with f-divergences

@ Given pyara and py, we could minimize D¢(pg, pdata) oF Df(Pdatas Po)
as learning objectives. Non-negative, and zero if py = pyata
@ However, it depends on the density ratio which is unknown

Po(x) >
D , = Ex~pyors f
f(pG pdata) Pd. <Pdata(x)

approx w. samples
uknown ratio _|

pdata(x) >
D , = Ex~ fl|———=
f(pdata p@) Po < P (X)

approx w. samples
uknown ratio |

@ To use f-divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate the objective using only
samples (e.g., training data and samples from the model)
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Towards Variational Divergence Minimization

@ Fenchel conjugate: For any function f(-), its convex conjugate is
f*(t) = sup (ut—f(u))
ucdomy
where domy is the domain of the function f

e f* is convex (pointwise supremum of convex functions is convex) and
lower semi-continuous.

@ Let ** be the Fenchel conjugate of *

**(u)= sup (tu—f*(t))

tGdOmf*

o ™ < f. Proof: By definition, for all t, u

f*(t) > ut — f(u) or equivalently f(u) > ut — f*(t)

f(u) > Slip(ut — *(¢t)) = f**(uv)

@ Strong Duality: f**=f when f(-) is convex, lower semicontinous.
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f-GAN: Variational Divergence Minimization

@ We obtain a lower bound to an f-divergence via Fenchel conjugate

Ao = e ()] =8 (5]

et g [ sup (tP(x) B f*(t)):|

te€domgx q(X)

_ N C R
= B | T0ES - (T ()|

- /X a(x) {T*(X)% _ f*(T*(x))] dx

- /X [T(x)p(x) — F(T*(x))a(x)] dx

= sw [ [T(0p0) ~ £ (T(x)a00)] dx
T X

> sup /X (T)p(x) — F(T(x))a(x))dx

TeT

;zr;(f:'mp [T = Exng [F (T
where 7 : X — R is an arbitrary class of functions

@ Note: Lower bound is likelihood-free w.r.t. p and g
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f-GAN: Variational Divergence Minimization

@ Variational lower bound

Dr(p,q) = sup (Exwp [T(X)] = Exng [F7(T(x)))])
TeT

Choose any f-divergence

Let p = pdata and g = pg
Parameterize T by ¢ and G by 0

Consider the following f-GAN objective

mein ch;-lX F(ev ¢) = EXNPdata [T¢(X)] - EXNPGG [f*(T¢(X)))]

Generator Gy tries to minimize the divergence estimate and
discriminator Ty tries to tighten the lower bound

@ Substitute any f-divergence and optimize the f-GAN objective
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Beyond KL and Jenson-Shannon Divergence

d(P gatar Py)

Pdata

Xi~Pdata bem
i=12..,n

What choices do we have for d(+)?

o KL divergence: Autoregressive Models, Flow models

Model family

@ (scaled and shifted) Jensen-Shannon divergence (approximately): via
the original GAN objective

@ Any other f-divergence (approximately): via the f-GAN objective
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Wasserstein GAN: beyond f-divergences

The f-divergence is defined as

o= (32)

q(x)

@ The support of g has to cover the support of p. Otherwise
discontinuity arises in f-divergences.

]_ = 1 =
o Let p(x) = {O’ z# 8 and gy(x) = {07 i# Z
0, =0
o Dui(p,qo) = o, 640"

0, 0=0

log2, 040

@ We need a “smoother” distance D(p, q) that is defined when p and ¢
have disjoint supports.

o Dss(p,qo) = {
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Wasserstein (Earth-Mover) distance

andyY VU \

D q

@ Wasserstein distance

Du(p,q) = inf  E )~ — ,
(p,q) e o Foow) SIx = yll4]

where N(p, q) contains all joint distributions of (x,y) where the
marginal of x is p(x) = [ v(x,y)dy, and the marginal of y is g(y).
@ ~(y | x): a probabilistic earth moving plan that warps p(x) to g(y).
o Let p(x) =14 *= 7 and qo(x) =< =
0, x#0 0, x#6
® Du(p,q0) = 16].
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Wasserstein GAN (WGAN)

@ Kantorovich-Rubinstein duality

Du(p,q) = sup Explf(x)] — Exglf(x)]
Ifll<1

IIf|l <1 means the Lipschitz constant of f(x) is 1. Technically,
v,y o () = F(y)l < lx = ylh

Intuitively, f cannot change too rapidly.

o Wasserstein GAN with discriminator Dy (x) and generator Gy(z):

mein mq?x Expgaes [P (X)] = Ezp(z)[Dop(Go(2))]

Lipschitzness of Dy(x) is enforced through weight clipping or gradient
penalty on VyDy(x).
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Wasserstein GAN (WGAN)

1.0
— Density of real
0.8 — Density of fake
’ — GAN Discriminator
WGAN Critic
0.6 |
0.4 f
0.2}
0.0 =" emnciputpienc: R
~
-0.2} Vanishing gradients
in regular GAN
-0.4 > ;
8 -6 -4 -2 0 2 4 6 8

@ More stable training, and less mode collapse.
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Inferring latent representations in GANs

@ The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x. How can we infer the
latent feature representations in a GAN?

@ Unlike a normalizing flow model, the mapping G : z — x need not be
invertible

@ Unlike a variational autoencoder, there is no inference network q(-)
which can learn a variational posterior over latent variables

@ Solution 1: For any point x, use the activations of the prefinal layer
of a discriminator as a feature representation

@ Intuition: Similar to supervised deep neural networks, the
discriminator would have learned useful representations for x while
distinguishing real and fake x
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Inferring latent representations in GANs

o If we want to directly infer the latent variables z of the generator, we
need a different learning algorithm

@ A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

@ Solution 2: To infer latent representations, we will compare samples
of x,z from the joint distributions of observed and latent variables as
per the model and the data distribution

@ For any x generated via the model, we have access to z (sampled
from a simple prior p(z))

@ For any x from the data distribution, the z is however unobserved
(latent). Need an encoder!
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Bidirectional Generative Adversarial Networks (BiGAN)

features data

>
e o)
<8 =

@ In a BiGAN, we have an encoder network E in addition to the
generator network G

@ The encoder network only observes x ~ pgata(x) during training to
learn a mapping E : x+— z

@ As before, the generator network only observes the samples from the
prior z ~ p(z) during training to learn a mapping G : z — x
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Bidirectional Generative Adversarial Networks (BiGAN)

features data

- mamc
e L)
ORI

@ The discriminator D observes samples from the generative model
z, G(z) and the encoding distribution E(x),x

@ The goal of the discriminator is to maximize the two-sample test
objective between z, G(z) and E(x),x

@ After training is complete, new samples are generated via G and
latent representations are inferred via E

Stefano Ermon (Al Lab) Deep Generative Models Lecture 10 19/28



Translating across domains

@ Image-to-image translation: We are given images from two domains,
X and Y

@ Paired vs. unpaired examples

Paired Unpaired
Ti Y X
{ ) (i ks

e ]

{ .} = e

Source: Zhu et al., 2016

@ Paired examples can be expensive to obtain. Can we translate from
X < Y in an unsupervised manner?
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CycleGAN: Adversarial training across two domains

@ To match the two distributions, we learn two parameterized
conditional generative models G : X — Y and F: Y — X

@ G maps an element of X" to an element of V. A discriminator Dy
compares the observed dataset Y and the generated samples
Y =G(X)

@ Similarly, F maps an element of ) to an element of X. A
discriminator Dy compares the observed dataset X and the generated
samples X = F(Y)

N\
~__—

Source: Zhu et al., 2016
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CycleGAN: Cycle consistency across domains

@ Cycle consistency: If we can go from X to Y via G, then it should
also be possible to go from Y back to X via F

o F(G(X))~ X

o Similarly, vice versa: G(F(Y)) =Y

e = a
NP BENNH

X

cycle-consistency ...«
loss :

o |

O

Y X

Y cycle-consistency
> :——*o\ L7 s
._)

@ Overall loss function

Source: Zhu et al., 2016

min ,CGAN(G,DJ;,X, Y)—i—ﬁGAN(F, Dy, X, Y)

F,G,Dx,Dy

FAEXIFG00) — X[l + Ev[I6(F(Y)) — YiRl)
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CycleGAN in practice

Monet < Photos Zebras T Horses Summer _ Winter

horse — zebra

Photograph

Van Gogh Cezanne Ukiyo-e
Source: Zhu et al., 2016
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AlignFlow (G

(a) CycleGAN (b) AlignFlow

Figure 1: CycleGAN v.s. AlignFlow for unpaired cross-domain translation. Unlike CycleGAN,
AlignFlow specifies a single invertible mapping Ga—,z © G;LZ that is exactly cycle-consistent,
represents a shared latent space Z between the two domains, and can be trained via both adversarial
training and exact maximum likelihood estimation. Double-headed arrows denote invertible mappings.
Y and Yp are random variables denoting the output of the critics used for adversarial training.

e What if G is a flow model?
@ No need to parameterize F separately! F = G~1
e Can train via MLE and/or adversarial learning!

@ Exactly cycle-consistent
F(G(X)) =X
G(F(Y)) =Y
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StarGAN (Choi et al.)

@ What if there are multiple domains?

(a) Cross-domain models (b) StarGAN

o
2
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StarGAN (Choi et al.)

(@) Training the discriminator (b) Original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator

|

| Depth-wise concatenation

image Fake image —
t

o —

|

Reconstructed
—
image

(), (2){—J kﬂ(l)

D« Domain

Real / Fake
classification

Real / Fa

classification

Depth-wise concatenation
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StarGAN (Choi et al.)

Blond hair Gender Aged Pale skin Input Angry Happy Fearful

2
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Summary of Generative Adversarial Networks

o Key observation: Samples and likelihoods are not correlated in
practice

@ Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

@ Wide range of two-sample test objectives covering f-divergences and
Wasserstein distances (and more)

@ Latent representations can be inferred via BiGAN

@ Cycle-consistent domain translations via CycleGAN, AlignFlow and
StarGAN.
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