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Recap.

Likelihood-free training

Training objective for GANs

min
G

max
D

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1− D(x))]

With the optimal discriminator D∗
G , we see GAN minimizes a scaled

and shifted Jensen-Shannon divergence

min
G

2DJSD [pdata, pG ]− log 4

Parameterize D by ϕ and G by θ. Prior distribution p(z).

min
θ

max
ϕ

Ex∼pdata [logDϕ(x)] + Ez∼p(z)[log(1− Dϕ(Gθ(z)))]
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Selected GANs

https://github.com/hindupuravinash/the-gan-zoo

The GAN Zoo: List of all named GANs

Today

Rich class of likelihood-free objectives via f -GANs
Wasserstein GAN
Inferring latent representations via BiGAN
Application: Image-to-image translation via CycleGANs
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Beyond KL and Jenson-Shannon Divergence

What choices do we have for d(·)?
KL divergence: Autoregressive Models, Flow models

(scaled and shifted) Jensen-Shannon divergence (approximately):
original GAN objective
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f divergences

Given two densities p and q, the f -divergence is given by

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]
where f is any convex, lower-semicontinuous function with f (1) = 0.

Convex: Line joining any two points lies above the function

Lower-semicontinuous: function value at any point x0 is close to
f (x0) or greater than f (x0)

Jensen’s inequality: Ex∼q[f (p(x)/q(x))] ≥ f (Ex∼q[p(x)/q(x)]) =
f (
∫
q(x)p(x)/q(x)) = f (

∫
p(x)) = f (1) = 0

Example: KL divergence with f (u) = u log u
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f divergences

Many more f-divergences!
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Training with f -divergences

Given pdata and pθ, we could minimize Df (pθ, pdata) or Df (pdata, pθ)
as learning objectives. Non-negative, and zero if pθ = pdata
However, it depends on the density ratio which is unknown

Df (pθ, pdata) = Ex∼pdata︸ ︷︷ ︸
approx w. samples

f
(

pθ(x)

pdata(x)

)
︸ ︷︷ ︸
uknown ratio



Df (pdata, pθ) = Ex∼pθ︸ ︷︷ ︸
approx w. samples

f
(
pdata(x)

pθ(x)

)
︸ ︷︷ ︸
uknown ratio


To use f -divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate the objective using only
samples (e.g., training data and samples from the model)
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Towards Variational Divergence Minimization

Fenchel conjugate: For any function f (·), its convex conjugate is

f ∗(t) = sup
u∈domf

(ut − f (u))

where domf is the domain of the function f

f ∗ is convex (pointwise supremum of convex functions is convex) and
lower semi-continuous.

Let f ∗∗ be the Fenchel conjugate of f ∗

f ∗∗(u) = sup
t∈domf ∗

(tu − f ∗(t))

f ∗∗ ≤ f . Proof: By definition, for all t, u

f ∗(t) ≥ ut − f (u) or equivalently f (u) ≥ ut − f ∗(t)

f (u) ≥ sup
t
(ut − f ∗(t)) = f ∗∗(u)

Strong Duality: f ∗∗=f when f (·) is convex, lower semicontinous.
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f -GAN: Variational Divergence Minimization

We obtain a lower bound to an f -divergence via Fenchel conjugate

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]
= Ex∼q

[
f ∗∗

(
p(x)

q(x)

)]
f ∗∗ def

= Ex∼q

[
sup

t∈domf ∗

(
t
p(x)

q(x)
− f ∗(t)

)]

= Ex∼q

[
T∗(x)

p(x)

q(x)
− f ∗(T∗(x))

]
=

∫
X

q(x)

[
T∗(x)

p(x)

q(x)
− f ∗(T∗(x))

]
dx

=

∫
X

[T∗(x)p(x)− f ∗(T∗(x))q(x)]dx

= sup
T

∫
X

[T (x)p(x)− f ∗(T (x))q(x)] dx

≥ sup
T∈T

∫
X
(T (x)p(x)− f ∗(T (x))q(x))dx

= sup
T∈T

(Ex∼p [T (x)]− Ex∼q [f
∗(T (x)))])

where T : X 7→ R is an arbitrary class of functions
Note: Lower bound is likelihood-free w.r.t. p and q
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f -GAN: Variational Divergence Minimization

Variational lower bound

Df (p, q) ≥ sup
T∈T

(Ex∼p [T (x)]− Ex∼q [f
∗(T (x)))])

Choose any f -divergence

Let p = pdata and q = pG

Parameterize T by ϕ and G by θ

Consider the following f -GAN objective

min
θ

max
ϕ

F (θ, ϕ) = Ex∼pdata [Tϕ(x)]− Ex∼pGθ
[f ∗(Tϕ(x)))]

Generator Gθ tries to minimize the divergence estimate and
discriminator Tϕ tries to tighten the lower bound

Substitute any f -divergence and optimize the f -GAN objective
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Beyond KL and Jenson-Shannon Divergence

What choices do we have for d(·)?
KL divergence: Autoregressive Models, Flow models

(scaled and shifted) Jensen-Shannon divergence (approximately): via
the original GAN objective

Any other f -divergence (approximately): via the f -GAN objective
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Wasserstein GAN: beyond f -divergences

The f -divergence is defined as

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]

The support of q has to cover the support of p. Otherwise
discontinuity arises in f -divergences.

Let p(x) =

{
1, x = 0

0, x ̸= 0
, and qθ(x) =

{
1, x = θ

0, x ̸= θ
.

DKL(p, qθ) =

{
0, θ = 0

∞, θ ̸= 0
.

DJS(p, qθ) =

{
0, θ = 0

log 2, θ ̸= 0
.

We need a “smoother” distance D(p, q) that is defined when p and q
have disjoint supports.
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Wasserstein (Earth-Mover) distance

Wasserstein distance

Dw (p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ [∥x− y∥1],

where Π(p, q) contains all joint distributions of (x, y) where the
marginal of x is p(x) =

∫
γ(x, y)dy, and the marginal of y is q(y).

γ(y | x): a probabilistic earth moving plan that warps p(x) to q(y).

Let p(x) =

{
1, x = 0

0, x ̸= 0
, and qθ(x) =

{
1, x = θ

0, x ̸= θ
.

Dw (p, qθ) = |θ|.
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Wasserstein GAN (WGAN)

Kantorovich-Rubinstein duality

Dw (p, q) = sup
∥f ∥L≤1

Ex∼p[f (x)]− Ex∼q[f (x)]

∥f ∥L ≤ 1 means the Lipschitz constant of f (x) is 1. Technically,

∀x, y : |f (x)− f (y)| ≤ ∥x− y∥1

Intuitively, f cannot change too rapidly.

Wasserstein GAN with discriminator Dϕ(x) and generator Gθ(z):

min
θ

max
ϕ

Ex∼pdata [Dϕ(x)]− Ez∼p(z)[Dϕ(Gθ(z))]

Lipschitzness of Dϕ(x) is enforced through weight clipping or gradient
penalty on ∇xDϕ(x).
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Wasserstein GAN (WGAN)

More stable training, and less mode collapse.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 10 15 / 28



Inferring latent representations in GANs

The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x. How can we infer the
latent feature representations in a GAN?

Unlike a normalizing flow model, the mapping G : z 7→ x need not be
invertible

Unlike a variational autoencoder, there is no inference network q(·)
which can learn a variational posterior over latent variables

Solution 1: For any point x, use the activations of the prefinal layer
of a discriminator as a feature representation

Intuition: Similar to supervised deep neural networks, the
discriminator would have learned useful representations for x while
distinguishing real and fake x
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Inferring latent representations in GANs

If we want to directly infer the latent variables z of the generator, we
need a different learning algorithm

A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

Solution 2: To infer latent representations, we will compare samples
of x, z from the joint distributions of observed and latent variables as
per the model and the data distribution

For any x generated via the model, we have access to z (sampled
from a simple prior p(z))

For any x from the data distribution, the z is however unobserved
(latent). Need an encoder!
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Bidirectional Generative Adversarial Networks (BiGAN)

In a BiGAN, we have an encoder network E in addition to the
generator network G

The encoder network only observes x ∼ pdata(x) during training to
learn a mapping E : x 7→ z

As before, the generator network only observes the samples from the
prior z ∼ p(z) during training to learn a mapping G : z 7→ x
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Bidirectional Generative Adversarial Networks (BiGAN)

The discriminator D observes samples from the generative model
z,G (z) and the encoding distribution E (x), x

The goal of the discriminator is to maximize the two-sample test
objective between z,G (z) and E (x), x

After training is complete, new samples are generated via G and
latent representations are inferred via E
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Translating across domains

Image-to-image translation: We are given images from two domains,
X and Y
Paired vs. unpaired examples

Paired examples can be expensive to obtain. Can we translate from
X ↔ Y in an unsupervised manner?
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CycleGAN: Adversarial training across two domains

To match the two distributions, we learn two parameterized
conditional generative models G : X 7→ Y and F : Y 7→ X
G maps an element of X to an element of Y. A discriminator DY
compares the observed dataset Y and the generated samples
Ŷ = G (X )

Similarly, F maps an element of Y to an element of X . A
discriminator DX compares the observed dataset X and the generated
samples X̂ = F (Y )
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CycleGAN: Cycle consistency across domains

Cycle consistency: If we can go from X to Ŷ via G , then it should
also be possible to go from Ŷ back to X via F

F (G (X )) ≈ X
Similarly, vice versa: G (F (Y )) ≈ Y

Overall loss function

min
F ,G ,DX ,DY

LGAN(G ,DY ,X ,Y ) + LGAN(F ,DX ,X ,Y )

+λ (EX [∥F (G (X ))− X∥1] + EY [∥G (F (Y ))− Y ∥1])︸ ︷︷ ︸
cycle consistency
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CycleGAN in practice
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AlignFlow (Grover et al.)

What if G is a flow model?

No need to parameterize F separately! F = G−1

Can train via MLE and/or adversarial learning!

Exactly cycle-consistent
F(G(X)) = X
G(F(Y)) = Y
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StarGAN (Choi et al.)

What if there are multiple domains?
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StarGAN (Choi et al.)
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StarGAN (Choi et al.)
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Summary of Generative Adversarial Networks

Key observation: Samples and likelihoods are not correlated in
practice

Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

Wide range of two-sample test objectives covering f -divergences and
Wasserstein distances (and more)

Latent representations can be inferred via BiGAN

Cycle-consistent domain translations via CycleGAN, AlignFlow and
StarGAN.
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