Generative Adversarial Networks

Stefano Ermon

Stanford University

Lecture 10

Recap.

- Likelihood-free training
- Training objective for GANs

$$\min_{G} \max_{D} V(G, D) = E_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))]$$

• With the optimal discriminator D_G^* , we see GAN minimizes a scaled and shifted Jensen-Shannon divergence

$$\min_{G} 2D_{JSD}[p_{data}, p_G] - \log 4$$

• Parameterize D by ϕ and G by θ . Prior distribution $p(\mathbf{z})$.

$$\min_{\theta} \max_{\phi} E_{\mathbf{x} \sim \boldsymbol{p}_{\mathsf{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{z} \sim \boldsymbol{p}(\mathbf{z})}[\log(1 - D_{\phi}(G_{\theta}(\mathbf{z})))]$$

- https://github.com/hindupuravinash/the-gan-zoo The GAN Zoo: List of all named GANs
- Today
 - Rich class of likelihood-free objectives via f-GANs
 - Wasserstein GAN
 - Inferring latent representations via BiGAN
 - Application: Image-to-image translation via CycleGANs

Beyond KL and Jenson-Shannon Divergence

What choices do we have for $d(\cdot)$?

- KL divergence: Autoregressive Models, Flow models
- (scaled and shifted) Jensen-Shannon divergence (approximately): original GAN objective

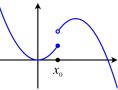
f divergences

• Given two densities p and q, the f-divergence is given by

$$D_f(p,q) = E_{\mathbf{x} \sim q} \left[f\left(\frac{p(\mathbf{x})}{q(\mathbf{x})} \right) \right]$$

where f is any convex, lower-semicontinuous function with f(1) = 0.

- Convex: Line joining any two points lies above the function
- Lower-semicontinuous: function value at any point x₀ is close to f(x₀) or greater than f(x₀)



- Jensen's inequality: $E_{\mathbf{x} \sim q}[f(p(\mathbf{x})/q(\mathbf{x}))] \ge f(E_{\mathbf{x} \sim q}[p(\mathbf{x})/q(\mathbf{x})]) = f(\int q(x)p(\mathbf{x})/q(\mathbf{x})) = f(\int p(x)) = f(1) = 0$
- Example: KL divergence with $f(u) = u \log u$

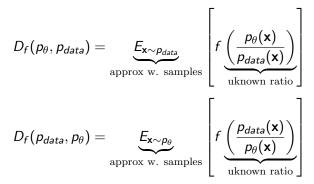
Many more f-divergences!

Name	$D_f(P \ Q)$	Generator $f(u)$
Total variation	$rac{1}{2}\int p(x)-q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u - 1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$(\sqrt{u} - 1)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)} \right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} \mathrm{d}x$	$\pi u \log u - (1-\pi+\pi u) \log(1-\pi+\pi u)$
GAN	$ \int p(x) r \log \frac{p(z) + q(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4) $	$u\log u - (u+1)\log(u+1)$
$\alpha \text{-divergence} \ (\alpha \notin \{0,1\})$	$rac{1}{lpha(lpha-1)}\int \left(p(x)\left[\left(rac{q(x)}{p(x)} ight)^lpha-1 ight]-lpha(q(x)-p(x)) ight)\mathrm{d}x$	$rac{1}{lpha(lpha-1)}\left(u^lpha-1-lpha(u-1) ight)$

Source: Nowozin et al., 2016

Training with *f*-divergences

- Given p_{data} and p_{θ} , we could minimize $D_f(p_{\theta}, p_{data})$ or $D_f(p_{data}, p_{\theta})$ as learning objectives. Non-negative, and zero if $p_{\theta} = p_{data}$
- However, it depends on the density ratio which is unknown



• To use *f*-divergences as a two-sample test objective for likelihood-free learning, we need to be able to estimate the objective using only samples (e.g., training data and samples from the model)

Stefano Ermon (AI Lab)

Deep Generative Models

Towards Variational Divergence Minimization

• Fenchel conjugate: For any function $f(\cdot)$, its convex conjugate is

$$f^*(t) = \sup_{u \in \operatorname{dom}_f} (ut - f(u))$$

where dom_f is the domain of the function f

- *f*^{*} is convex (pointwise supremum of convex functions is convex) and lower semi-continuous.
- Let f^{**} be the Fenchel conjugate of f^{*}

$$f^{**}(u) = \sup_{t \in \mathrm{dom}_{f^*}} (tu - f^*(t))$$

• $f^{**} \leq f$. Proof: By definition, for all t, u

 $f^*(t) \ge ut - f(u)$ or equivalently $f(u) \ge ut - f^*(t)$

$$f(u) \geq \sup_t (ut - f^*(t)) = f^{**}(u)$$

• Strong Duality: $f^{**}=f$ when $f(\cdot)$ is convex, lower semicontinous.

f-GAN: Variational Divergence Minimization

• We obtain a lower bound to an *f*-divergence via Fenchel conjugate

$$D_{f}(p,q) = E_{\mathbf{x}\sim q} \left[f\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right) \right] = E_{\mathbf{x}\sim q} \left[f^{**}\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right) \right]$$

$$\stackrel{f^{**}=def}{=} E_{\mathbf{x}\sim q} \left[\sup_{t \in \text{dom}_{f^{*}}} \left(t \frac{p(\mathbf{x})}{q(\mathbf{x})} - f^{*}(t) \right) \right]$$

$$= E_{\mathbf{x}\sim q} \left[T^{*}(\mathbf{x}) \frac{p(\mathbf{x})}{q(\mathbf{x})} - f^{*}(T^{*}(\mathbf{x})) \right]$$

$$= \int_{\mathcal{X}} q(\mathbf{x}) \left[T^{*}(\mathbf{x}) \frac{p(\mathbf{x})}{q(\mathbf{x})} - f^{*}(T^{*}(\mathbf{x})) \right] d\mathbf{x}$$

$$= \int_{\mathcal{X}} [T^{*}(\mathbf{x})p(\mathbf{x}) - f^{*}(T^{*}(\mathbf{x}))q(\mathbf{x})] d\mathbf{x}$$

$$= \sup_{T \in \mathcal{T}} \int_{\mathcal{X}} [T(\mathbf{x})p(\mathbf{x}) - f^{*}(T(\mathbf{x}))q(\mathbf{x})] d\mathbf{x}$$

$$= \sup_{T \in \mathcal{T}} \int_{\mathcal{X}} (T(\mathbf{x})p(\mathbf{x}) - f^{*}(T(\mathbf{x}))q(\mathbf{x})) d\mathbf{x}$$

$$= \sup_{T \in \mathcal{T}} \left(E_{\mathbf{x}\sim p} [T(\mathbf{x})] - E_{\mathbf{x}\sim q} [f^{*}(T(\mathbf{x})))] \right)$$

where $\mathcal{T} : \mathcal{X} \mapsto \mathbb{R}$ is an arbitrary class of functions • **Note:** Lower bound is likelihood-free w.r.t. *p* and *q*

Stefano Ermon (AI Lab)

Deep Generative Models

f-GAN: Variational Divergence Minimization

• Variational lower bound

$$D_f(p,q) \geq \sup_{T \in \mathcal{T}} \left(E_{\mathbf{x} \sim p} \left[T(\mathbf{x}) \right] - E_{\mathbf{x} \sim q} \left[f^*(T(\mathbf{x})) \right] \right)$$

- Choose any *f*-divergence
- Let $p = p_{data}$ and $q = p_G$
- Parameterize T by ϕ and G by θ
- Consider the following *f*-GAN objective

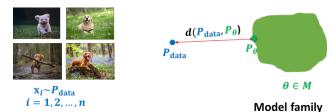
$$\min_{\theta} \max_{\phi} F(\theta, \phi) = E_{\mathbf{x} \sim p_{\mathsf{data}}} \left[T_{\phi}(\mathbf{x}) \right] - E_{\mathbf{x} \sim p_{\mathcal{G}_{\theta}}} \left[f^*(T_{\phi}(\mathbf{x})) \right]$$

- Generator G_{θ} tries to minimize the divergence estimate and discriminator T_{ϕ} tries to tighten the lower bound
- Substitute any f-divergence and optimize the f-GAN objective

Stefano Ermon (AI Lab)

Deep Generative Models

Beyond KL and Jenson-Shannon Divergence



What choices do we have for $d(\cdot)$?

- KL divergence: Autoregressive Models, Flow models
- (scaled and shifted) Jensen-Shannon divergence (approximately): via the original GAN objective
- Any other *f*-divergence (approximately): via the *f*-GAN objective

Wasserstein GAN: beyond *f*-divergences

The *f*-divergence is defined as

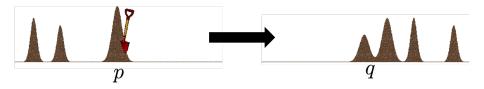
$$D_f(p,q) = E_{\mathbf{x} \sim q} \left[f\left(\frac{p(\mathbf{x})}{q(\mathbf{x})} \right) \right]$$

• The support of *q* has to cover the support of *p*. Otherwise discontinuity arises in *f*-divergences.

• Let
$$p(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} = 0 \\ 0, & \mathbf{x} \neq 0 \end{cases}$$
 and $q_{\theta}(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} = \theta \\ 0, & \mathbf{x} \neq \theta \end{cases}$
• $D_{KL}(p, q_{\theta}) = \begin{cases} 0, & \theta = 0 \\ \infty, & \theta \neq 0 \end{cases}$
• $D_{JS}(p, q_{\theta}) = \begin{cases} 0, & \theta = 0 \\ \log 2, & \theta \neq 0 \end{cases}$

• We need a "smoother" distance D(p,q) that is defined when p and q have disjoint supports.

Wasserstein (Earth-Mover) distance



• Wasserstein distance

$$D_{w}(p,q) = \inf_{\gamma \in \Pi(p,q)} E_{(\mathbf{x},\mathbf{y}) \sim \gamma}[\|\mathbf{x} - \mathbf{y}\|_{1}],$$

where $\Pi(p, q)$ contains all joint distributions of (\mathbf{x}, \mathbf{y}) where the marginal of \mathbf{x} is $p(\mathbf{x}) = \int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y}$, and the marginal of \mathbf{y} is $q(\mathbf{y})$.

• $\gamma(\mathbf{y} \mid \mathbf{x})$: a probabilistic earth moving plan that warps $p(\mathbf{x})$ to $q(\mathbf{y})$. • Let $p(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} = 0 \\ 0, & \mathbf{x} \neq 0 \end{cases}$, and $q_{\theta}(\mathbf{x}) = \begin{cases} 1, & \mathbf{x} = \theta \\ 0, & \mathbf{x} \neq \theta \end{cases}$.

• $D_w(p,q_\theta) = |\theta|.$

• Kantorovich-Rubinstein duality

$$D_w(p,q) = \sup_{\|f\|_L \leq 1} E_{\mathbf{x} \sim p}[f(\mathbf{x})] - E_{\mathbf{x} \sim q}[f(\mathbf{x})]$$

 $\|f\|_L \leq 1$ means the Lipschitz constant of $f(\mathbf{x})$ is 1. Technically,

$$orall \mathbf{x}, \mathbf{y}: \quad |f(\mathbf{x}) - f(\mathbf{y})| \leq \|\mathbf{x} - \mathbf{y}\|_1$$

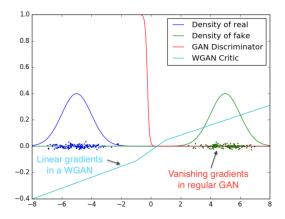
Intuitively, f cannot change too rapidly.

• Wasserstein GAN with discriminator $D_{\phi}(\mathbf{x})$ and generator $G_{\theta}(\mathbf{z})$:

$$\min_{\theta} \max_{\phi} E_{\mathbf{x} \sim p_{\mathsf{data}}}[D_{\phi}(\mathbf{x})] - E_{\mathbf{z} \sim p(\mathbf{z})}[D_{\phi}(G_{\theta}(\mathbf{z}))]$$

Lipschitzness of $D_{\phi}(\mathbf{x})$ is enforced through weight clipping or gradient penalty on $\nabla_{\mathbf{x}} D_{\phi}(\mathbf{x})$.

Wasserstein GAN (WGAN)

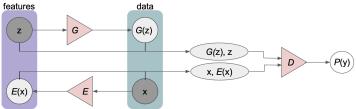


• More stable training, and less mode collapse.

- The generator of a GAN is typically a directed, latent variable model with latent variables z and observed variables x. How can we infer the latent feature representations in a GAN?
- Unlike a normalizing flow model, the mapping G : z → x need not be invertible
- Unlike a variational autoencoder, there is no inference network $q(\cdot)$ which can learn a variational posterior over latent variables
- **Solution 1**: For any point **x**, use the activations of the prefinal layer of a discriminator as a feature representation
- Intuition: Similar to supervised deep neural networks, the discriminator would have learned useful representations for x while distinguishing real and fake x

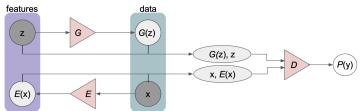
- If we want to directly infer the latent variables **z** of the generator, we need a different learning algorithm
- A regular GAN optimizes a two-sample test objective that compares samples of **x** from the generator and the data distribution
- Solution 2: To infer latent representations, we will compare samples of x, z from the joint distributions of observed and latent variables as per the model and the data distribution
- For any **x** generated via the model, we have access to **z** (sampled from a simple prior p(z))
- For any **x** from the data distribution, the **z** is however unobserved (latent). Need an encoder!

Bidirectional Generative Adversarial Networks (BiGAN)



- In a BiGAN, we have an encoder network *E* in addition to the generator network *G*
- The encoder network only observes x ~ p_{data}(x) during training to learn a mapping E : x → z
- As before, the generator network only observes the samples from the prior z ~ p(z) during training to learn a mapping G : z → x

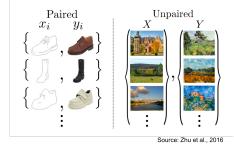
Bidirectional Generative Adversarial Networks (BiGAN)



- The discriminator *D* observes samples from the generative model **z**, *G*(**z**) and the encoding distribution *E*(**x**), **x**
- The goal of the discriminator is to maximize the two-sample test objective between z, G(z) and E(x), x
- After training is complete, new samples are generated via G and latent representations are inferred via E

Translating across domains

- \bullet Image-to-image translation: We are given images from two domains, ${\cal X}$ and ${\cal Y}$
- Paired vs. unpaired examples



• Paired examples can be expensive to obtain. Can we translate from $\mathcal{X} \leftrightarrow \mathcal{Y}$ in an unsupervised manner?

CycleGAN: Adversarial training across two domains

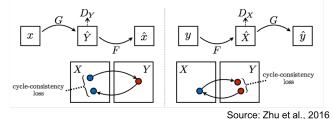
- To match the two distributions, we learn two parameterized conditional generative models G : X → Y and F : Y → X
- G maps an element of X to an element of Y. A discriminator D_Y compares the observed dataset Y and the generated samples Ŷ = G(X)
- Similarly, F maps an element of Y to an element of X. A discriminator D_X compares the observed dataset X and the generated samples X̂ = F(Y)



Source: Zhu et al., 2016

CycleGAN: Cycle consistency across domains

- Cycle consistency: If we can go from X to \hat{Y} via G, then it should also be possible to go from \hat{Y} back to X via F
 - $F(G(X)) \approx X$
 - Similarly, vice versa: $G(F(Y)) \approx Y$

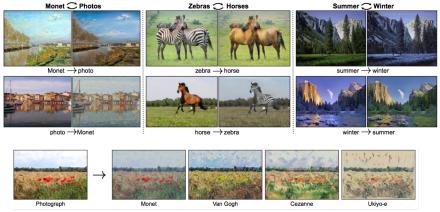


Overall loss function

$$\min_{F,G,D_{\mathcal{X}},D_{\mathcal{Y}}} \mathcal{L}_{GAN}(G,D_{\mathcal{Y}},X,Y) + \mathcal{L}_{GAN}(F,D_{\mathcal{X}},X,Y) + \lambda \underbrace{(E_X[\|F(G(X)) - X\|_1] + E_Y[\|G(F(Y)) - Y\|_1])}_{(E_X[\|F(G(X)) - X\|_1] + E_Y[\|G(F(Y)) - Y\|_1])}$$

cycle consistency

CycleGAN in practice



Source: Zhu et al., 2016

AlignFlow (Grover et al.)

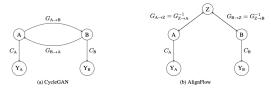


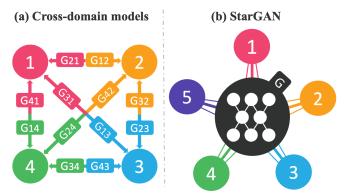
Figure 1: CycleGAN v.s. AlignFlow for unpaired cross-domain translation. Unlike CycleGAN, AlignFlow specifies a single invertible mapping $G_{A \to Z}$ or $G_{B \to Z}^{-1}$ that is exactly cycle-consistent, represents a shared latent space Z between the two domains, and can be trained via both adversarial training and exact maximum likelihood estimation. Double-headed arrows denote invertible mappings. Y_A and Y_B are random variables denoting the output of the critics used for adversarial training.

- What if G is a flow model?
- No need to parameterize F separately! $F = G^{-1}$
- Can train via MLE and/or adversarial learning!
- Exactly cycle-consistent

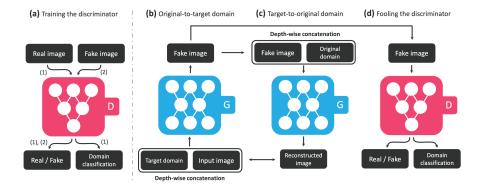
 $\begin{array}{l} \mathsf{F}(\mathsf{G}(\mathsf{X})) = \mathsf{X} \\ \mathsf{G}(\mathsf{F}(\mathsf{Y})) = \mathsf{Y} \end{array}$

StarGAN (Choi et al.)

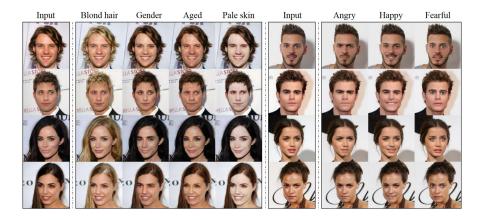
• What if there are multiple domains?



StarGAN (Choi et al.)



StarGAN (Choi et al.)



- Key observation: Samples and likelihoods are not correlated in practice
- Two-sample test objectives allow for learning generative models only via samples (likelihood-free)
- Wide range of two-sample test objectives covering *f*-divergences and Wasserstein distances (and more)
- Latent representations can be inferred via BiGAN
- Cycle-consistent domain translations via CycleGAN, AlignFlow and StarGAN.