
Energy-Based Models

Stefano Ermon

Stanford University

Lecture 12

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 1 / 1

Recap. of last lecture

Energy-based models: pθ(x) =
exp{fθ(x)}

Z(θ) .

Z (θ) is intractable, so no access to likelihood.
Comparing the probability of two points is easy:
pθ(x′)/pθ(x) = exp(fθ(x′)− fθ(x)).

Maximum likelihood training: maxθ{fθ(xtrain)− logZ (θ)}.
Contrastive divergence:

∇θfθ(xtrain)−∇θ logZ (θ) ≈ ∇θfθ(xtrain)−∇θfθ(xsample),

where xsample ∼ pθ(x).

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 2 / 1

Sampling from EBMs: MH-MCMC

Metropolis-Hastings Markov chain Monte Carlo (MCMC).

1 x0 ∼ π(x)
2 Repeat for t = 0, 1, 2, · · · ,T − 1:

x′ = xt + noise
xt+1 = x′ if fθ(x′) ≥ fθ(xt)
If fθ(x′) < fθ(xt), set xt+1 = x′ with probability exp{fθ(x′)− fθ(xt)},
otherwise set xt+1 = xt .

Properties:

In theory, xT converges to pθ(x) when T → ∞. Why?

Satisfies detailed balance condition: pθ(x)Tx→x′ = pθ(x′)Tx′→x where
Tx→x′ is the probability of transitioning from x to x′

If xt is distributed as pθ, then xt+1 is distributed as pθ.

In practice, need a large number of iterations and convergence slows
down exponentially in dimensionality.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 3 / 1

Sampling from EBMs: unadjusted Langevin MCMC

Unadjusted Langevin MCMC:

1 x0 ∼ π(x)
2 Repeat for t = 0, 1, 2, · · · ,T − 1:

zt ∼ N (0, I)
xt+1 = xt + ϵ∇x log pθ(x)|x=xt +

√
2ϵzt

Properties:

xT converges to a sample from pθ(x) when T → ∞ and ϵ → 0.

∇x log pθ(x) = ∇xfθ(x) for continuous energy-based models.

Convergence slows down as dimensionality grows.

Sampling converges slowly in high dimensional spaces and is thus very
expensive, yet we need sampling for each training iteration in contrastive
divergence.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 4 / 1

Today’s lecture

Goal: Training without sampling

Score Matching

Noise Contrastive Estimation

Adversarial training

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 5 / 1

Score function

Energy-based model: pθ(x) =
exp{fθ(x)}

Z(θ) , log pθ(x) = fθ(x)− logZ (θ)

(Stein) Score function:

sθ(x) := ∇x log pθ(x) = ∇xfθ(x)−∇x logZ (θ)︸ ︷︷ ︸
=0

= ∇xfθ(x)

Gaussian distribution

pθ(x) =
1√
2πσ

e−
(x−µ)2

2σ2

−→ sθ(x) = − x−µ
σ2

Gamma distribution
pθ(x) =

βα

Γ(α)x
α−1e−βx

−→ sθ(x) =
α−1
x − β

pθ(x) vs. sθ(x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 6 / 1

Score matching

Observation

sθ(x) = ∇x log pθ(x) is independent of the partition function Z (θ).

Fisher divergence between p(x) and q(x):

DF (p, q) :=
1

2
Ex∼p[∥∇x log p(x)−∇x log q(x)∥22]

Score matching: minimizing the Fisher divergence between pdata(x) and
the EBM pθ(x) ∝ exp{fθ(x)}

1

2
Ex∼pdata [∥∇x log pdata(x)− sθ(x)∥22]

=
1

2
Ex∼pdata [∥∇x log pdata(x)−∇xfθ(x)∥22]

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 7 / 1

Score matching

1

2
Ex∼pdata [∥∇x log pdata(x)−∇x log pθ(x)∥22]

How to deal with ∇x log pdata(x) given only samples? Integration by parts!
1
2
Ex∼pdata [(∇x log pdata(x)−∇x log pθ(x))

2] (Univariate case)

= 1
2

∫
pdata(x)[(∇x log pdata(x)−∇x log pθ(x))

2]dx

= 1
2

∫
pdata(x)(∇x log pdata(x))

2dx + 1
2

∫
pdata(x)(∇x log pθ(x))

2dx

−
∫
pdata(x)∇x log pdata(x)∇x log pθ(x)dx

Recall Integration by parts:
∫
f ′g = fg −

∫
g ′f .

−
∫
pdata(x)∇x log pdata(x)∇x log pθ(x)dx

= −
∫
pdata(x)

1
pdata(x)

∇xpdata(x)∇x log pθ(x)dx

= −pdata(x)∇x log pθ(x)|∞x=−∞︸ ︷︷ ︸
=0

+
∫
pdata(x)∇2

x log pθ(x)dx

=
∫
pdata(x)∇2

x log pθ(x)dx

Note: we need to assume pdata decays sufficiently rapidly, pdata(x) → 0
when x → ±∞.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 8 / 1

Score matching

Univariate score matching

1
2Ex∼pdata [(∇x log pdata(x)−∇x log pθ(x))

2]

= 1
2

∫
pdata(x)(∇x log pdata(x))

2dx + 1
2

∫
pdata(x)(∇x log pθ(x))

2dx

−
∫
pdata(x)∇x log pdata(x)∇x log pθ(x)dx

=
1

2

∫
pdata(x)(∇x log pdata(x))

2dx︸ ︷︷ ︸
const. wrt θ

+ 1
2

∫
pdata(x)(∇x log pθ(x))

2dx

+
∫
pdata(x)∇2

x log pθ(x)dx

= Ex∼pdata [
1
2(∇x log pθ(x))

2 +∇2
x log pθ(x)] + const.

Multivariate score matching (integration by parts, i.e. Gauss theorem)

1

2
Ex∼pdata [∥∇x log pdata(x)−∇x log pθ(x)∥22]

=Ex∼pdata

[1
2
∥∇x log pθ(x)∥22 + tr(∇2

x log pθ(x)︸ ︷︷ ︸
Hessian of log pθ(x)

)
]
+ const.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 9 / 1

Score matching

1 Sample a mini-batch of datapoints {x1, x2, · · · , xn} ∼ pdata(x).
2 Estimate the score matching loss with the empirical mean

1

n

n∑
i=1

[1
2
∥∇x log pθ(xi)∥22 + tr(∇2

x log pθ(xi))
]

=
1

n

n∑
i=1

[1
2
∥∇xfθ(xi)∥22 + trace(∇2

xfθ(xi))
]

3 Stochastic gradient descent.
4 No need to sample from the EBM!

Caveat

Computing the trace of Hessian tr(∇2
x log pθ(x)) is in general very

expensive for large models.

Denoising score matching (Vincent 2010) and sliced score matching (Song
et al. 2019). More on this in the next lecture!

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 10 / 1

Recap.

Distances used for training energy-based models.

KL divergence = maximum likelihood.

∇θfθ(xdata)− fθ(xsample) (contrastive divergence)

Fisher divergence = score matching.

1

2
Ex∼pdata [∥∇x log pdata(x)−∇xfθ(x)∥22]

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 11 / 1

Noise contrastive estimation

Learning an energy-based model by contrasting it with a noise distribution.

Data distribution: pdata(x).

Noise distribution: pn(x). Should be analytically tractable and easy to
sample from.

Training a discriminator Dθ(x) ∈ [0, 1] to distinguish between data
samples and noise samples.

max
θ

Ex∼pdata [logDθ(x)] + Ex∼pn [log(1− Dθ(x))]

What is the Optimal discriminator Dθ∗(x)?

Dθ∗(x) =
pdata(x)

pdata(x) + pn(x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 12 / 1

Noise contrastive estimation

What if the discriminator is parameterized by

Dθ(x) =
pθ(x)

pθ(x) + pn(x)

The optimal discriminator Dθ∗(x) satisfies

Dθ∗(x) =
pθ∗(x)

pθ∗(x) + pn(x)
=

pdata(x)

pdata(x) + pn(x)

By training the discriminator, we are implicitly learning
pθ∗(x) ≈ pdata(x). Particularly suitable for cases where pθ(x) is
defined up to a normalization constant (EBMs)
Equivalently,

pθ∗(x) =
pn(x)Dθ∗(x)

1− Dθ∗(x)
= pdata(x)

Classifier is used to correct density estimates from pn. Can be used to
improve a base generative model (Boosted Generative Models, Grover
et al., 2018)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 13 / 1

Noise contrastive estimation for training EBMs

Energy-based model:

pθ(x) =
efθ(x)

Z (θ)

The constraint Z (θ) =
∫
efθ(x)dx is hard to satisfy.

Solution: Modeling Z (θ) with an additional trainable parameter Z that is
not explicitly constrained to satisfy Z =

∫
efθ(x)dx.

pθ,Z (x) =
efθ(x)

Z
With noise contrastive estimation, the optimal parameters θ∗,Z ∗ are

pθ∗,Z∗(x) =
efθ∗ (x)

Z ∗ = pdata(x)

The optimal parameter Z ∗ is the correct partition function, because∫
efθ∗ (x)

Z ∗ dx =

∫
pdata(x)dx = 1 =⇒ Z ∗ =

∫
efθ∗ (x)dx

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 14 / 1

Noise contrastive estimation for training EBMs

The discriminator Dθ,Z (x) for probabilistic model pθ,Z (x) is

Dθ,Z (x) =
efθ(x)

Z

efθ(x)

Z + pn(x)
=

efθ(x)

efθ(x) + pn(x)Z

Noise contrastive estimation training

max
θ,Z

Ex∼pdata [logDθ,Z (x)] + Ex∼pn [log(1− Dθ,Z (x))]

Equivalently,

max
θ,Z

Ex∼pdata [fθ(x)− log(efθ(x) + Zpn(x))]

+ Ex∼pn [log(Zpn(x))− log(efθ(x) + Zpn(x))]

Log-sum-exp trick for numerical stability:

log(efθ(x) + Zpn(x)) = log(efθ(x) + e logZ+log pn(x))

= logsumexp(fθ(x), logZ + log pn(x))

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 15 / 1

Noise contrastive estimation for training EBMs

1 Sample a mini-batch of datapoints x1, x2, · · · , xn ∼ pdata(x).

2 Sample a mini-batch of noise samples y1, y2, · · · , yn ∼ pn(y).

3 Estimate the NCE loss.

1

n

n∑
i=1

[fθ(xi)− logsumexp(fθ(xi), logZ + log pn(xi))

+ logZ + pn(yi)− logsumexp(fθ(yi), logZ + log pn(yi))]

4 Stochastic gradient ascent with respect to θ and Z .

5 No need to sample from the EBM!

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 16 / 1

Comparing NCE and GAN

Similarities:

Both involve training a discriminator to perform binary classification
with a cross-entropy loss.

Both are likelihood-free (recall likelihood not tractable in EBM).

Differences:

GAN requires adversarial training or minimax optimization for
training, while NCE does not.

NCE requires the likelihood of the noise distribution for training, while
GAN only requires efficient sampling from the prior.

NCE trains an energy-based model, while GAN trains a deterministic
sample generator.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 17 / 1

Flow contrastive estimation (Gao et al. 2020)

Observations:

We need to both evaluate the probability of pn(x), and sample from it
efficiently.

We hope to make the classification task as hard as possible, i.e.,
pn(x) should be close to pdata(x) (but not exactly the same).

Flow contrastive estimation:

Parameterize the noise distribution with a normalizing flow model
pn,ϕ(x).

Parameterize the discriminator Dθ,Z ,ϕ(x) as

Dθ,Z ,ϕ(x) =
efθ(x)

Z

efθ(x)

Z + pn,ϕ(x)
=

efθ(x)

efθ(x) + pn,ϕ(x)Z

Train the flow model to minimize DJS(pdata, pn,ϕ):

min
ϕ

max
θ,Z

Ex∼pdata [logDθ,Z ,ϕ(x)] + Ex∼pn,ϕ [log(1− Dθ,Z ,ϕ(x))]

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 18 / 1

Flow contrastive estimation (Gao et al. 2020)

Samples from SVHN, CIFAR-10, and CelebA datasets.

Image source: Gao et al. 2020.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 19 / 1

Adversarial training for EBMs

Energy-based model:

pθ(x) =
efθ(x)

Z (θ)

Upper bounding its log-likelihood with a variational distribution qϕ(x):

Ex∼pdata [log pθ(x)] = Ex∼pdata [fθ(x)]− logZ (θ)

= Ex∼pdata [fθ(x)]− log
∫
efθ(x)dx

= Ex∼pdata [fθ(x)]− log
∫
qϕ(x)

efθ(x)

qϕ(x)
dx

≤ Ex∼pdata [fθ(x)]−
∫
qϕ(x) log

efθ(x)

qϕ(x)
dx

= Ex∼pdata [fθ(x)]− Ex∼qϕ [fθ(x)]− H(qϕ(x))

Adversarial training

max
θ

min
ϕ

Ex∼pdata [fθ(x)]− Ex∼qϕ [fθ(x)]− H(qϕ(x))

What do we require for the model qϕ(x)?
Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 20 / 1

Conclusion

Energy-based models are very flexible probabilistic models with
intractable partition functions.

Sampling is hard and typically requires iterative MCMC approaches.

Computing the likelihood is hard.

Comparing the likelihood/probability of two different points is
tractable.

Maximum likelihood training by contrastive divergence. Requires
sampling for each training iteration.

Sampling-free training: score matching.

Sampling-free training: noise contrastive estimation. Additionally
provides an estimate of the partition function.

Sampling-free training: adversarial optimization.

Reference: How to Train Your Energy-Based Models by Yang Song
and Durk Kingma.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 12 21 / 1

