Generative Adversarial Imitation Learning

Stefano Ermon
Joint work with Jayesh Gupta, Jonathan Ho, Yunzhu Li, Hongyu Ren, and Jiaming Song

Stanford University
Reinforcement Learning

• Goal: Learn policies
• High-dimensional, raw observations
Reinforcement Learning

- **MDP**: Model for (stochastic) sequential decision making problems
 - States S
 - Actions A
 - **Cost** function (immediate): $C: S \times A \rightarrow R$
 - Transition Probabilities: $P(s'|s,a)$

- **Policy**: mapping from states to actions
 - E.g., $(S_0\rightarrow a_1, S_1\rightarrow a_0, S_2\rightarrow a_0)$

- Reinforcement learning: minimize total (expected, discounted) cost
 $$\sum_{t=0}^{T-1} c(s_t)$$
Reinforcement Learning

\[RL(c) = \arg \min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi[c(s, a)] \]

- **Cost Function** \(c(s, a) \)
- **Environment** (MDP)
 - States \(S \)
 - Actions \(A \)
 - Transitions: \(P(s' | s, a) \)
- **Policy**: mapping from states to actions
 - E.g., \(S_0 \rightarrow a_1, S_1 \rightarrow a_0, S_2 \rightarrow a_0 \)
- **RL needs cost signal**
Imitation

Input: expert behavior generated by π_E

$$\{(s^i_0, a^i_0, s^i_1, a^i_1, \ldots)\}_{i=1}^n \sim \pi_E$$

Goal: learn cost function (reward) or policy

(Ng and Russell, 2000), (Abbeel and Ng, 2004; Syed and Schapire, 2007), (Ratliff et al., 2006), (Ziebart et al., 2008), (Kolter et al., 2008), (Finn et al., 2016), etc.
Behavioral Cloning

- Small errors compound over time (cascading errors)
- Decisions are purposeful (require planning)
Inverse RL

• An approach to imitation
• Learns a cost c such that

$$\pi_E = \arg\min_{\pi \in \Pi} \mathbb{E}_\pi [c(s, a)]$$
Problem setup

\[
RL(c) = \arg \min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_{\pi}[c(s, a)]
\]

Cost Function \(c(s) \)

Reinforcement Learning (RL)

Optimal policy \(\pi \)

Environment (MDP)

Inverse Reinforcement Learning (IRL)

Expert’s Trajectories \(s_0, s_1, s_2, \ldots \)

Cost Function \(c(s) \)

\[
\text{maximize}_{c \in C} \left(\min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_{\pi}[c(s, a)] \right) - \mathbb{E}_{\pi_E}[c(s, a)]
\]

(Ziebart et al., 2010; Rust 1987)

Everything else has high cost

Expert has small cost
Problem setup

Cost Function $c(s)$ → Reinforcement Learning (RL) → Optimal policy π

Environment (MDP) → Inverse Reinforcement Learning (IRL)

Cost Function $c(s)$

Inverse Reinforcement Learning (IRL)

Expert’s Trajectories s_0, s_1, s_2, \ldots

IRL$_{\psi}(\pi_E) = \arg \max_{c \in \mathbb{R}^S \times A} -\psi(c) + \left(\min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi[c(s, a)] \right) - \mathbb{E}_{\pi_E}[c(s, a)]$

Convex cost regularizer

(similar wrt ψ)
Combining RL\circIRL

\[
\psi\text{-regularized Inverse Reinforcement Learning (IRL)} \Rightarrow \text{Optimal policy } \pi \Rightarrow \rho_\pi = \text{occupancy measure} = \text{distribution of state-action pairs encountered when navigating the environment with the policy}
\]

\[
\approx \rho_{\pi E} = \text{Expert's occupancy measure}
\]

\[
\text{Theorem: } \psi\text{-regularized inverse reinforcement learning, implicitly, seeks a policy whose occupancy measure is close to the expert's, as measured by } \psi^* \text{ (convex conjugate of } \psi) \]

\[
\text{RL } \circ \text{IRL}_\psi(\pi_E) = \arg \min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_\pi - \rho_{\pi E})
\]
Takeaway

Theorem: ψ-regularized inverse reinforcement learning, implicitly, *seeks a policy whose occupancy measure is close to the expert’s*, as measured by ψ^*

- Typical IRL definition: finding a cost function c such that the expert policy is uniquely optimal w.r.t. c

- Alternative view: IRL as a procedure that tries to induce a policy that matches the expert’s occupancy measure *(generative model)*
Special cases

\[RL \circ IRL_\psi (\pi_E) = \arg \min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_\pi - \rho_{\pi_E}) \]

• If \(\psi(c) = \text{constant} \), then \(\rho_{\tilde{\pi}} = \rho_{\pi_E} \)

 – Not a useful algorithm. In practice, we only have sampled trajectories

• **Overfitting:** Too much flexibility in choosing the cost function (and the policy)
Towards Apprenticeship learning

- Solution: use features \(f_{s,a} \)
- Cost \(c(s,a) = \theta \cdot f_{s,a} \)

\[
\text{IRL}_{\psi}(\pi_E) = \arg \max_{c \in \mathbb{R}^{S \times A}} -\psi(c) + \left(\min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi[c(s, a)] \right) - \mathbb{E}_{\pi_E}[c(s, a)]
\]

Only these “simple” cost functions are allowed

\[\psi(c) = \infty\]

Linear in features

\[\psi(c) = 0\]

All cost functions
Apprenticeship learning

- For that choice of ψ, $\text{RL} \circ \text{IRL}_\psi$ framework gives apprenticeship learning

\[
\text{RL} \circ \text{IRL}_\psi(\pi_E) = \arg \min_{\pi \in \Pi} -H(\pi) + \psi^*(\rho_\pi - \rho_{\pi_E})
\]

- Apprenticeship learning: find π performing better than π_E over costs linear in the features
 - Abbeel and Ng (2004)
 - Syed and Schapire (2007)
Apprenticeship learning

- Given \(\left\{ (s_0^i, a_0^i, s_1^i, a_1^i, \ldots) \right\}_{i=1}^n \sim \pi_E \)
- Goal: find \(\pi \) performing better than \(\pi_E \) over a class of costs

\[
\min_{\pi} \max_{c \in \mathcal{C}} \mathbb{E}_\pi [c(s, a)] - \mathbb{E}_{\pi_E} [c(s, a)]
\]

Approximated using demonstrations
Issues with Apprenticeship learning

• Need to craft features very carefully
 – unless the true expert cost function (assuming it exists) lies in C, there is no guarantee that AL will recover the expert policy

• $\text{RL} \circ \text{IRL}_\psi(\pi_E)$ is “encoding” the expert behavior as a cost function in C.
 – it might not be possible to decode it back if C is too simple
Generative Adversarial Imitation Learning

- **Solution**: use a more expressive class of cost functions

\[
\psi_{GA}(c) \triangleq \begin{cases}
\mathbb{E}_{\pi_E}[g(c(s, a))] & \text{if } c < 0 \\
+\infty & \text{otherwise}
\end{cases}
\]

where \(g(x) = \begin{cases}
-x - \log(1 - e^x) & \text{if } x < 0 \\
+\infty & \text{otherwise}
\end{cases} \)
Generative Adversarial Imitation Learning

• $\psi^* = \text{optimal negative log-loss of the binary classification problem of distinguishing between state-action pairs of } \pi \text{ and } \pi_E$
Generative Adversarial Networks

Figure from Goodfellow et al, 2014
GAIL

Differentiable function D

D tries to output 0

Sample from expert

Differentiable function P

Generator G

Black box simulator

Simulator (Environment)

Ho and Ermon, Generative Adversarial Imitation Learning
How to optimize the objective

• Previous Apprenticeship learning work:
 – Full dynamics model
 – Small environment
 – Repeated RL

• We propose: gradient descent over policy parameters (and discriminator)

Properties

• Inherits pros of policy gradient
 – Convergence to local minima
 – Can be model free

• Inherits cons of policy gradient
 – High variance
 – Small steps required
Properties

• Inherits pros of policy gradient
 – Convergence to local minima
 – Can be model free
• Inherits cons of policy gradient
 – High variance
 – Small steps required
• Solution: trust region policy optimization
Results
Results

Input: driving demonstrations (Torcs)

Output policy:

From raw visual inputs

Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations
Experimental results
Latent structure in demonstrations

Human model

Latent variables z → Policy → Environment → Observed Behavior

Semantically meaningful latent structure?
Maximize mutual information

$$L_I(\pi_\theta, Q_\psi) = \mathbb{E}_{c \sim p(c), a \sim \pi_\theta(\cdot|s, c)} \left[\log Q_\psi(c|s, a) \right] + H(c)$$

$$\leq I(c; s, a)$$
Synthetic Experiment

Demonstrations

GAIL

Info-GAIL
Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations

InfoGAIL

Latent variables z

Policy

Environment

Trajectories

Pass left ($z=0$)

Pass right ($z=1$)
InfoGAIL

Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations

model

Latent variables \(z \)

Policy

Environment

Trajectories

Turn inside \((z=0)\)

Turn outside \((z=1)\)
Multi-agent environments

What are the goals of these 4 agents?
Problem setup

Cost Functions
\[c_1(s,a_1) \]
\[\ldots \]
\[c_N(s,a_N) \]

MA Reinforcement Learning (MARL)

Environment (Markov Game)

Optimal policies
\[\pi_1 \]
\[\ldots \]

Optimal policies
\[\pi_K \]

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0,0</td>
<td>10,10</td>
</tr>
<tr>
<td>L</td>
<td>10,10</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Problem setup

Cost Functions
c_1(s,a_1) .. c_N(s,a_N)

MA Reinforcement Learning (MARL)

Optimal policies π

≈ (similar wrt ψ)

Inverse Reinforcement Learning (MAIRL)

Environment (Markov Game)

Expert’s Trajectories
(s_0,a_0^1,..a_0^N) (s_1,a_1^1,..a_1^N) ...

\[
\text{MIM}_\psi(\pi_E) = \arg \max_{\pi \in \Pi} \max_v \min_{r \in \mathbb{R}^{S \times A}} \mathcal{L}_\psi(\pi_E, v)
\]

\[
\mathcal{L}_\psi(\pi_E, v) = -f_r(\pi, v) + f_r(\pi_E, v) + \psi(r)
\]

r ∈ MAIRL(π_E)
MAGAIL

Sample from expert $(s, a_1, a_2, \ldots, a_N)$

Sample from model $(s, a_1, a_2, \ldots, a_N)$

Generator G

Black box simulator

Policy Agent 1

Policy Agent N

Song, Ren, Sadigh, Ermon, Multi-Agent Generative Adversarial Imitation Learning
Environments

Demonstrations

MAGAIL
Environments

Demonstrations

MAGAIL
Suboptimal demos

- **Expert**
- **MAGAIL**
 - lighter plank + bumps on ground
Conclusions

• IRL is a dual of an occupancy measure matching problem (generative modeling)
• Might need flexible cost functions
 – GAN style approach
• Policy gradient approach
 – Scales to high dimensional settings
• Towards unsupervised learning of latent structure from demonstrations