
Discrete Latent Variable Models

Stefano Ermon

Stanford University

Lecture 17

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 1 / 27

Summary

Major themes in the course

Representing probability distributions

Probability density/mass functions: autoregressive models, flow
models, variational autoencoders, energy-based models.
Sampling process: Generative adversarial networks.
Score function: Score-based generative models

Distances between distributions: two sample test, maximum
likelihood training, score matching, noise contrastive estimation.

Evaluation of generative models

Plan for today: Discrete Latent Variable Modeling

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 2 / 27

Why should we care about discreteness?

Discreteness is all around us!

Decision Making: Should I attend CS 236 lecture or not?

Structure learning

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 3 / 27

Why should we care about discreteness?

Many data modalities are inherently discrete

Graphs

Text, DNA Sequences, Program Source Code, Molecules, and lots more

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 4 / 27

Stochastic Optimization

Consider the following optimization problem

max
ϕ

Eqϕ(z)[f (z)]

Recap example: Think of q(·) as the inference distribution for a VAE

max
θ,ϕ

Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
.

Gradients w.r.t. θ can be derived via linearity of expectation

∇θEqϕ(z|x)[log pθ(x, z)− log qϕ(z | x)] = Eqϕ(z|x)[∇θ log pθ(x, z)]

≈ 1

k

∑
k

∇θ log pθ(x, z
k)

If z is continuous, qϕ(·) is reparameterizable, and f (·) is differentiable, then
we can use reparameterization to compute gradients w.r.t. ϕ

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 5 / 27

Stochastic Optimization with Reparameterization

Consider the following optimization problem

max
ϕ

Eqϕ(z)[f (z)]

Reparameterization trick:

ϵ ∼ p(ϵ)

z = gϕ(ϵ) ∼ qϕ(z)

Eqϕ(z)[f (z)] = Eϵ∼p(ϵ)[f (gϕ(ϵ))]

Gradient ascent:

∇ϕEqϕ(z)[f (z)] = ∇ϕEϵ∼p(ϵ)[f (gϕ(ϵ))]

= Eϵ∼p(ϵ)[∇ϕf (gϕ(ϵ))]

= Eϵ∼p(ϵ)[∇zf (z)∇ϕgϕ(ϵ)]

Assumptions: f (z) is differentiable, and qϕ(z) is reparameterizable.

What if either of the above assumptions fails?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 6 / 27

Stochastic Optimization with the log derivative trick

Consider the following optimization problem

max
ϕ

Eqϕ(z)[f (z)]

For many class of problem scenarios, reparameterization trick is
infeasible

Scenario 1: f (·) is non-differentiable in z e.g., optimizing a black box
reward function in reinforcement learning

Scenario 2: qϕ(z) cannot be reparameterized as a differentiable
function of ϕ with respect to a fixed base distribution e.g., discrete
distributions

The log derivative trick gives a general-purpose solution to both these
scenarios

We will first analyze it in the context of bandit problems and then
extend it to latent variable models with discrete latent variables

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 7 / 27

Multi-armed bandits

Example: Pulling arms of slot machines—–which arm to pull?

Set A of possible actions. E.g., pull arm 1, arm 2, . . . , etc.

Each action z ∈ A has a reward f (z)

Randomized policy for choosing actions qϕ(z) parameterized by ϕ .
For example, ϕ could be the parameters of a categorical distribution

Goal: Learn the parameters ϕ that maximize our earnings (in
expectation)

max
ϕ

Eqϕ(z)[f (z)]

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 8 / 27

Log derivative trick for gradient estimation

Want to compute a gradient with respect to ϕ of the expected reward

Eqϕ(z)[f (z)] =
∑
z

qϕ(z)f (z)

∂

∂ϕi
Eqϕ(z)[f (z)] =

∑
z
∂qϕ(z)
∂ϕi

f (z) =
∑

z qϕ(z)
1

qϕ(z)
∂qϕ(z)
∂ϕi

f (z)

=
∑

z qϕ(z)
∂ log qϕ(z)

∂ϕi
f (z) = Eqϕ(z)

[
∂ log qϕ(z)

∂ϕi
f (z)

]

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 9 / 27

Log derivative trick for gradient estimation

Want to compute a gradient with respect to ϕ of

Eqϕ(z)[f (z)] =
∑
z

qϕ(z)f (z)

The log derivative trick gives

∇ϕEqϕ(z)[f (z)] = Eqϕ(z) [f (z)∇ϕ log qϕ(z)]

We can now construct a Monte Carlo estimate

Sample z1, · · · , zK from qϕ(z) and estimate

∇ϕEqϕ(z)[f (z)] ≈
1

K

∑
k

f (zk)∇ϕ log qϕ(z
k)

Assumption: The distribution q(·) is easy to sample from and evaluate
probabilities

Works for both discrete and continuous distributions

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 10 / 27

Variational Learning of Latent Variable Models

To learn the variational approximation we need to compute the gradient
with respect to ϕ of

L(x; θ, ϕ) =
∑
z

qϕ(z|x) log pθ(x, z) + H(qϕ(z|x))

= Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x))]

The function inside the brackets also depends on ϕ (and θ, x). Want to
compute a gradient with respect to ϕ of

Eqϕ(z|x)[f (ϕ, θ, z, x)] =
∑
z

qϕ(z|x)f (ϕ, θ, z, x)

The log derivative trick yields

∇ϕEqϕ(z|x)[f (ϕ, θ, z, x)] = Eqϕ(z|x) [f (ϕ, θ, z, x)∇ϕ log qϕ(z|x) +∇ϕf (ϕ, θ, z, x)]

We can now construct a Monte Carlo estimate of ∇ϕL(x; θ, ϕ)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 11 / 27

The log derivative trick has high variance

Want to compute a gradient with respect to ϕ of

Eqϕ(z)[f (z)] =
∑
z

qϕ(z)f (z)

The log derivative trick is

∇ϕEqϕ(z)[f (z)] = Eqϕ(z) [f (z)∇ϕ log qϕ(z)]

Monte Carlo estimate: Sample z1, · · · , zK from qϕ(z)

∇ϕEqϕ(z)[f (z)] ≈
1

K

∑
k

f (zk)∇ϕ log qϕ(z
k) := fMC(z

1, · · · , zK)

Monte Carlo estimates of gradients are unbiased

Ez1,··· ,zK∼qϕ(z)

[
fMC(z

1, · · · , zK)
]
= ∇ϕEqϕ(z)[f (z)]

Almost never used in practice because of high variance

Variance can be reduced via carefully designed control variates

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 12 / 27

Control Variates

The log derivative trick gives

∇ϕEqϕ(z)[f (z)] = Eqϕ(z) [f (z)∇ϕ log qϕ(z)]

Given any constant B (a control variate)

∇ϕEqϕ(z)[f (z)] = Eqϕ(z) [(f (z)− B)∇ϕ log qϕ(z)]

To see why,

Eqϕ(z) [B∇ϕ log qϕ(z)] = B
∑
z

qϕ(z)∇ϕ log qϕ(z) = B
∑
z

∇ϕqϕ(z)

= B∇ϕ

∑
z

qϕ(z) = B∇ϕ1 = 0

Monte Carlo gradient estimates of both f (z) and f (z)− B have same
expectation

These estimates can however have different variances

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 13 / 27

Control variates

Suppose we want to compute

Eqϕ(z)[f (z)] =
∑
z

qϕ(z)f (z)

Define
f̂ (z) = f (z) + a

(
h(z)− Eqϕ(z)[h(z)]

)
h(z) is referred to as a control variate

Assumption: Eqϕ(z)[h(z)] is known

Monte Carlo gradient estimates of f (z) and f̂ (z) have the same expectation

Ez1,··· ,zK∼qϕ(z)[f̂MC(z
1, · · · , zK)] = Ez1,··· ,zK∼qϕ(z)[fMC(z

1, · · · , zK)]

but different variances

Can try to learn and update the control variate during training

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 14 / 27

Control variates

Deriving an alternate Monte Carlo estimate for log derivative
gradients based on control variates

Sample z1, · · · , zK from qϕ(z)

∇ϕEqϕ(z)[f (z)]

= ∇ϕEqϕ(z)[f (z) + a
(
h(z)− Eqϕ(z)[h(z)]

)
]

≈ 1
K

∑
k f (z

k)∇ϕ log qϕ(z
k) + a

(
1
K

∑K
k=1 h(z

k)− Eqϕ(z)[h(z)]
)

:= fMC(z
1, · · · , zK) + a

(
hMC(z

1, · · · , zK)− Eqϕ(z)[h(z)]
)

:= f̂MC(z
1, · · · , zK)

What is Var(f̂MC) vs. Var(fMC)?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 15 / 27

Control variates

Comparing Var(f̂MC) vs. Var(fMC)

Var(f̂MC) = Var(fMC + a
(
hMC − Eqϕ(z)[h(z)]

)
)

= Var(fMC + ahMC)

= Var(fMC) + a2Var(hMC) + 2aCov(fMC, hMC)

To get the optimal coefficient a∗ that minimizes the variance, take
derivatives w.r.t. a and set them to 0

a∗ = −Cov(fMC, hMC)

Var(hMC)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 16 / 27

Control variates

Comparing Var(f̂MC) vs. Var(fMC)

Var(f̂MC) = Var(fMC) + a2Var(hMC) + 2aCov(fMC, hMC)

Setting the coefficient a = a∗ = −Cov(fMC,hMC)
Var(hMC)

Var(f̂MC) = Var(fMC)−
Cov(fMC, hMC)

2

Var(hMC)

= Var(fMC)−
Cov(fMC, hMC)

2

Var(hMC)Var(fMC)
Var(fMC)

= (1− ρ(fMC, hMC)
2)Var(fMC)

Correlation coefficient ρ(fMC, hMC) is between -1 and 1. For maximum
variance reduction, we want fMC and hMC to be highly correlated

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 17 / 27

Neural Variational Inference and Learning (NVIL)

Latent variable models with discrete latent variables are often referred
to as belief networks

Variational learning objective is same as ELBO

L(x; θ, ϕ) =
∑
z

qϕ(z|x) log pθ(x, z) + H(qϕ(z|x))

= Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)]
:= Eqϕ(z|x)[f (ϕ, θ, z, x)]

Here, z is discrete and hence we cannot use reparameterization

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 18 / 27

Neural Variational Inference and Learning (NVIL)

NVIL (Mnih&Gregor, 2014) learns belief networks via the log
derivative trick + control variates

Control Variate 1: Constant baseline B

Control Variate 2: Input dependent baseline hψ(x)

Gradient ascent w.r.t. ϕ with the log derivative trick + control
variates

∇ϕL(x; θ, ϕ, ψ,B)
= Eqϕ(z|x) [(f (ϕ, θ, z, x)− hψ(x)− B)∇ϕ log qϕ(z|x) +∇ϕf (ϕ, θ, z, x)]

Gradient ascent w.r.t. θ

Optimize ψ,B to minimize Eqϕ(z|x)[(f (ϕ, θ, z, x)− hψ(x)− B)2]

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 19 / 27

Towards reparameterized, continuous relaxations

Consider the following optimization problem

max
ϕ

Eqϕ(z)[f (z)]

Reparameterization trick is not directly applicable for discrete z

The log derivative trick is a general-purpose solution, but needs
careful design of control variates

Next: Relax z to a continuous random variable with a
reparameterizable distribution

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 20 / 27

Gumbel Distribution

Setting: We are given i.i.d. samples y1, y2, ..., yn from some
underlying distribution How can we model the distribution of

g = max{y1, y2, ..., yn}

E.g., predicting maximum water level in a river based on historical
data to detect flooding

The Gumbel distribution is very useful for modeling extreme, rare
events, e.g., natural disasters, finance

CDF for a Gumbel random variable g is parameterized by a location
parameter µ and a scale parameter β

F (g ;µ, β) = exp

(
− exp

(
−g − µ

β

))

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 21 / 27

Categorical Distributions

Let z denote a k-dimensional categorical random variable with
distribution q parameterized by class probabilities
π = {π1, π2, . . . , πk}. We will represent z as a one-hot vector

Gumbel-Max reparameterization trick for sampling from
categorical random variables

z = one hot

(
argmax

i
(gi + log πi)

)
where g1, g2, . . . , gk are i.i.d. samples drawn from Gumbel(0, 1)

In words, we can sample from Categorical(π) by taking the argmax
over k Gumbel perturbed log-class probabilities gi + log πi

Reparametrizable since randomness is transferred to a fixed
Gumbel(0, 1) distribution!

Problem: argmax is non-differentiable w.r.t. π

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 22 / 27

Relaxing Categorical Distributions to Gumbel-Softmax

Gumbel-Max Sampler (non-differentiable w.r.t. π):

z = one hot

(
argmax

i
(gi + logπ)

)

Key idea: Replace argmax with softmax to get a Gumbel-Softmax
random variable ẑ

Ouput of softmax is differentiable w.r.t. π

Gumbel-Softmax Sampler (differentiable w.r.t. π):

ẑ = softmax
i

(
gi + logπ

τ

)
where τ > 0 is a tunable parameter referred to as the temperature

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 23 / 27

Bias-variance tradeoff via temperature control

Gumbel-Softmax distribution is parameterized by both class probabilities π
and the temperature τ > 0

ẑ = softmax
i

(
gi + logπ

τ

)
Temperature τ controls the degree of the relaxation via a bias-variance
tradeoff

As τ → 0, samples from Gumbel-Softmax(π, τ) are similar to samples from
Categorical(π)
Pro: low bias in approximation Con: High variance in gradients

As τ → ∞, samples from Gumbel-Softmax(π, τ) are similar to samples from
Categorical

([
1
k ,

1
k , . . . ,

1
k

])
(i.e., uniform over k categories)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 24 / 27

Geometric Interpretation

Consider a categorical distibution with class probability vector
π = [0.60, 0.25, 0.15]
Define a probability simplex with the one-hot vectors as vertices

For a categorical distribution, all probability mass is concentrated at
the vertices of the probability simplex
Gumbel-Softmax samples points within the simplex (lighter color
intensity implies higher probability)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 25 / 27

Gumbel-Softmax in action

Original optimization problem

max
ϕ

Eqϕ(z)[f (z)]

where qϕ(z) is a categorical distribution and ϕ = π

Relaxed optimization problem

max
ϕ

Eqϕ(ẑ)[f (ẑ)]

where qϕ(ẑ) is a Gumbel-Softmax distribution and ϕ = {π, τ}
Usually, temperature τ is explicitly annealed. Start high for low
variance gradients and gradually reduce to tighten approximation
Note that ẑ is not a discrete category. If the function f (·) explicitly
requires a discrete z, then we estimate straight-through gradients:

Use hard z ∼ Categorical(z) for evaluating objective in forward pass
Use soft ẑ ∼ GumbelSoftmax(ẑ, τ) for evaluating gradients in backward
pass

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 26 / 27

Summary

Discovering discrete latent structure e.g., categories, rankings,
matchings etc. has several applications

Stochastic Optimization w.r.t. parameterized discrete distributions is
challenging

The log derivative trick is the general purpose technique for gradient
estimation, but suffers from high variance

Control variates can help in controlling the variance

Continuous relaxations to discrete distributions offer a biased,
reparameterizable alternative with the trade-off in significantly lower
variance

Stefano Ermon (AI Lab) Deep Generative Models Lecture 17 27 / 27

