
Representation

CS236, Stanford University

Lecture 2

CS236, Stanford University Deep Generative Models Lecture 2 1 / 29

Overview

What is a generative model

Representing probability distributions

Curse of dimensionality
Crash course on graphical models (Bayesian networks)
Generative vs discriminative models
Neural models

CS236, Stanford University Deep Generative Models Lecture 2 2 / 29

Learning a generative model

We are given a training set of examples, e.g., images of dogs

We want to learn a probability distribution p(x) over images x such that

Generation: If we sample xnew ∼ p(x), xnew should look like a dog
(sampling)
Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)
Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

First question: how to represent p(x)

CS236, Stanford University Deep Generative Models Lecture 2 3 / 29

Basic discrete distributions

Bernoulli distribution: (biased) coin flip

D = {Heads,Tails}
Specify P(X = Heads) = p. Then P(X = Tails) = 1− p.
Write: X ∼ Ber(p)
Sampling: flip a (biased) coin

Categorical distribution: (biased) m-sided dice

D = {1, · · · ,m}
Specify P(Y = i) = pi , such that

∑
pi = 1

Write: Y ∼ Cat(p1, · · · , pm)
Sampling: roll a (biased) die

CS236, Stanford University Deep Generative Models Lecture 2 4 / 29

Example of joint distribution

Modeling a single pixel’s color. Three discrete random variables:

Red Channel R. Val(R) = {0, · · · , 255}
Green Channel G . Val(G) = {0, · · · , 255}
Blue Channel B. Val(B) = {0, · · · , 255}

Sampling from the joint distribution (r , g , b) ∼ p(R,G ,B) randomly
generates a color for the pixel. How many parameters do we need to
specify the joint distribution p(R = r ,G = g ,B = b)?

256 ∗ 256 ∗ 256− 1

CS236, Stanford University Deep Generative Models Lecture 2 5 / 29

Example of joint distribution

Suppose X1, . . . ,Xn are binary (Bernoulli) random variables, i.e.,
Val(Xi) = {0, 1} = {Black,White}.
How many possible images (states)?

2× 2× · · · × 2︸ ︷︷ ︸
n times

= 2n

Sampling from p(x1, . . . , xn) generates an image

How many parameters to specify the joint distribution p(x1, . . . , xn)
over n binary pixels?

2n − 1

CS236, Stanford University Deep Generative Models Lecture 2 6 / 29

Structure through independence

If X1, . . . ,Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

How many possible states? 2n

How many parameters to specify the joint distribution p(x1, . . . , xn)?

How many to specify the marginal distribution p(x1)? 1

2n entries can be described by just n numbers (if |Val(Xi)| = 2)!

Independence assumption is too strong. Model not likely to be useful

For example, each pixel chosen independently when we sample from it.

CS236, Stanford University Deep Generative Models Lecture 2 7 / 29

Two important rules

1 Chain rule Let S1, . . .Sn be events, p(Si) > 0.

p(S1 ∩ S2 ∩ · · · ∩ Sn) = p(S1)p(S2 | S1) · · · p(Sn | S1 ∩ . . . ∩ Sn−1)

2 Bayes’ rule Let S1,S2 be events, p(S1) > 0 and p(S2) > 0.

p(S1 | S2) =
p(S1 ∩ S2)

p(S2)
=

p(S2 | S1)p(S1)
p(S2)

CS236, Stanford University Deep Generative Models Lecture 2 8 / 29

Structure through conditional independence

Using Chain Rule

p(x1, . . . , xn) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, · · · , xn−1)

How many parameters? 1 + 2 + · · ·+ 2n−1 = 2n − 1
p(x1) requires 1 parameter
p(x2 | x1 = 0) requires 1 parameter, p(x2 | x1 = 1) requires 1 parameter
Total 2 parameters.
· · ·

2n − 1 is still exponential, chain rule does not buy us anything.

Now suppose Xi+1 ⊥ X1, . . . ,Xi−1 | Xi , then

p(x1, . . . , xn) = p(x1)p(x2 | x1)p(x3 |��x1, x2) · · · p(xn |����x1, · · · ,xn−1)

= p(x1)p(x2 | x1)p(x3 | x2) · · · p(xn | xn−1)

How many parameters? 2n − 1. Exponential reduction!

CS236, Stanford University Deep Generative Models Lecture 2 9 / 29

Bayes Network: General Idea

Use conditional parameterization (instead of joint parameterization)

For each random variable Xi , specify p(xi |xAi
) for set XAi

of random
variables

Then get joint parametrization as

p(x1, . . . , xn) =
∏
i

p(xi |xAi
)

Need to guarantee it is a legal probability distribution. It has to
correspond to a chain rule factorization, with factors simplified due to
assumed conditional independencies

CS236, Stanford University Deep Generative Models Lecture 2 10 / 29

Bayesian networks

A Bayesian network is specified by a directed acyclic graph (DAG)
G = (V ,E) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Graph G = (V ,E) is called the structure of the Bayesian Network

Defines a joint distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

Claim: p(x1, . . . xn) is a valid probability distribution because of
ordering implied by DAG

Economical representation: exponential in |Pa(i)|, not |V |

CS236, Stanford University Deep Generative Models Lecture 2 11 / 29

Example

DAG stands for Directed Acyclic Graph

CS236, Stanford University Deep Generative Models Lecture 2 12 / 29

Example

Consider the following Bayesian network:

What is its joint distribution?

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

CS236, Stanford University Deep Generative Models Lecture 2 13 / 29

Bayesian network structure implies conditional
independencies!

The joint distribution corresponding to the above BN factors as

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

However, by the chain rule, any distribution can be written as

p(d , i , g , s, l) = p(d)p(i | d)p(g | i , d)p(s | i , d , g)p(l | g , d , i , s)

Thus, we are assuming the following additional independencies:
D ⊥ I , S ⊥ {D,G} | I , L ⊥ {I ,D,S} | G .

CS236, Stanford University Deep Generative Models Lecture 2 14 / 29

Summary

Bayesian networks given by (G ,P) where P is specified as a set of
local conditional probability distributions associated with G ’s nodes

Efficient representation using a graph-based data structure

Computing the probability of any assignment is obtained by
multiplying CPDs

Can sample from the joint by sampling from the CPDs according to
the DAG ordering

Can identify some conditional independence properties by looking at
graph properties

In this class, graphical models will be simple (e.g., only 2 or 3 random
vectors)

Next: generative vs. discriminative; functional parameterizations

CS236, Stanford University Deep Generative Models Lecture 2 15 / 29

Naive Bayes for single label prediction

Classify e-mails as spam (Y = 1) or not spam (Y = 0)

Let 1 : n index the words in our vocabulary (e.g., English)
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Words are conditionally independent given Y :

Then

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

CS236, Stanford University Deep Generative Models Lecture 2 16 / 29

Example: naive Bayes for classification

Classify e-mails as spam (Y = 1) or not spam (Y = 0)
Let 1 : n index the words in our vocabulary (e.g., English)
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Suppose that the words are conditionally independent given Y . Then,

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

Estimate parameters from training data. Predict with Bayes rule:

p(Y = 1 | x1, . . . xn) =
p(Y = 1)

∏n
i=1 p(xi | Y = 1)∑

y={0,1} p(Y = y)
∏n

i=1 p(xi | Y = y)

Are the independence assumptions made here reasonable?

Philosophy: Nearly all probabilistic models are “wrong”, but many are
nonetheless useful

CS236, Stanford University Deep Generative Models Lecture 2 17 / 29

Discriminative versus generative models

Using chain rule p(Y ,X) = p(X | Y)p(Y) = p(Y | X)p(X).
Corresponding Bayesian networks:

However, suppose all we need for prediction is p(Y | X)
In the left model, we need to specify/learn both p(Y) and p(X | Y),
then compute p(Y | X) via Bayes rule

In the right model, it suffices to estimate just the conditional
distribution p(Y | X)

We never need to model/learn/use p(X)!
Called a discriminative model because it is only useful for
discriminating Y ’s label when given X

CS236, Stanford University Deep Generative Models Lecture 2 18 / 29

Discriminative versus generative models

Since X is a random vector, chain rules will give

p(Y ,X) = p(Y)p(X1 | Y)p(X2 | Y ,X1) · · · p(Xn | Y ,X1, · · · ,Xn−1)
p(Y ,X) = p(X1)p(X2 | X1)p(X3 | X1,X2) · · · p(Y | X1, · · · ,Xn−1,Xn)

We must make the following choices:
1 In the generative model, p(Y) is simple, but how do we parameterize

p(Xi | Xpa(i),Y)?
2 In the discriminative model, how do we parameterize p(Y | X)? Here

we assume we don’t care about modeling p(X) because X is always
given to us in a classification problem

CS236, Stanford University Deep Generative Models Lecture 2 19 / 29

Naive Bayes

1 For the generative model, assume that Xi ⊥ X−i | Y (naive Bayes)

CS236, Stanford University Deep Generative Models Lecture 2 20 / 29

Logistic regression

1 For the discriminative model, assume that

p(Y = 1 | x;α) = f (x,α)

2 Not represented as a table anymore. It is a parameterized function of
x (regression)

Has to be between 0 and 1
Depend in some simple but reasonable way on x1, · · · , xn
Completely specified by a vector α of n + 1 parameters (compact
representation)

Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .Then,
p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is called the
logistic function:

z

1

1 + e−z

CS236, Stanford University Deep Generative Models Lecture 2 21 / 29

Logistic regression

Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .Then,
p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is called the
logistic function

1 Decision boundary p(Y = 1 | x;α) > 0.5 is linear in x

2 Equal probability contours are straight lines

3 Probability rate of change has very specific form (third plot)

CS236, Stanford University Deep Generative Models Lecture 2 22 / 29

Discriminative models are powerful

Logistic model does not assume Xi ⊥ X−i | Y , unlike naive Bayes

This can make a big difference in many applications

For example, in spam classification, let X1 = 1[“bank” in e-mail] and
X2 = 1[“account” in e-mail]

Regardless of whether spam, these always appear together, i.e. X1 = X2

Learning in naive Bayes results in p(X1 | Y) = p(X2 | Y). Thus, naive Bayes
double counts the evidence

Learning with logistic regression sets α1 = 0 or α2 = 0, in effect ignoring it

CS236, Stanford University Deep Generative Models Lecture 2 23 / 29

Generative models are still very useful

Using chain rule p(Y ,X) = p(X | Y)p(Y) = p(Y | X)p(X). Corresponding
Bayesian networks:

1 Using a conditional model is only possible when X is always observed

When some Xi variables are unobserved, the generative model allows us
to compute p(Y | Xevidence) by marginalizing over the unseen variables

CS236, Stanford University Deep Generative Models Lecture 2 24 / 29

Neural Models

1 In discriminative models, we assume that

p(Y = 1 | x;α) = f (x,α)

2 Linear dependence:
let z(α, x) = α0 +

∑n
i=1 αixi .

p(Y = 1 | x;α) = σ(z(α, x)), where σ(z) = 1/(1 + e−z) is the
logistic function
Dependence might be too simple

3 Non-linear dependence: let h(A,b, x) = f (Ax+ b) be a non-linear
transformation of the inputs (features).

pNeural(Y = 1 | x;α,A,b) = σ(α0 +
∑h

i=1 αihi)

More flexible
More parameters: A,b,α

CS236, Stanford University Deep Generative Models Lecture 2 25 / 29

Neural Models

1 In discriminative models, we assume that

p(Y = 1 | x;α) = f (x,α)

2 Linear dependence: let z(α, x) = α0 +
∑n

i=1 αixi .
p(Y = 1 | x;α) = f (z(α, x)), where f (z) = 1/(1 + e−z) is the
logistic function

Dependence might be too simple
3 Non-linear dependence: let h(A,b, x) = f (Ax+ b) be a non-linear

transformation of the inputs (features).

pNeural(Y = 1 | x;α,A,b) = f (α0 +
∑h

i=1 αihi)
More flexible
More parameters: A,b,α
Can repeat multiple times to get a neural network

CS236, Stanford University Deep Generative Models Lecture 2 26 / 29

Bayesian networks vs neural models

Using Chain Rule

p(x1, x2, x3, x4) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3)

Fully General

Bayes Net

p(x1, x2, x3, x4) ≈ p(x1)p(x2 | x1)p(x3 |��x1, x2)p(x4 | x1,���x2, x3)

Assumes conditional independencies

Neural Models

p(x1, x2, x3, x4) ≈ p(x1)p(x2 | x1)pNeural(x3 | x1, x2)pNeural(x4 | x1, x2, x3)

Assume specific functional form for the conditionals. A sufficiently
deep neural net can approximate any function.

CS236, Stanford University Deep Generative Models Lecture 2 27 / 29

Continuous variables

If X is a continuous random variable, we can usually represent it using
its probability density function pX : R → R+. However, we cannot
represent this function as a table anymore. Typically consider
parameterized densities:

Gaussian: X ∼ N (µ, σ) if pX (x) =
1

σ
√
2π
e−(x−µ)2/2σ2

Uniform: X ∼ U(a, b) if pX (x) = 1
b−a1[a ≤ x ≤ b]

Etc.

If X is a continuous random vector, we can usually represent it using
its joint probability density function:

Gaussian: if pX (x) =
1√

(2π)n|Σ|
exp

(
− 1

2 (x − µ)TΣ−1(x − µ)
)

Chain rule, Bayes rule, etc all still apply. For example,

pX ,Y ,Z (x , y , z) = pX (x)pY |X (y | x)pZ |{X ,Y }(z | x , y)

CS236, Stanford University Deep Generative Models Lecture 2 28 / 29

Continuous variables

This means we can still use Bayesian networks with continuous (and
discrete) variables. Examples:
Mixture of 2 Gaussians: Bayes net Z → X with factorization
pZ ,X (z , x) = pZ (z)pX |Z (x | z) and

Z ∼ Bernoulli(p)
X | (Z = 0) ∼ N (µ0, σ0) , X | (Z = 1) ∼ N (µ1, σ1)
The parameters are p, µ0, σ0, µ1, σ1

Bayes net Z → X with factorization pZ ,X (z , x) = pZ (z)pX |Z (x | z)
Z ∼ U(a, b)
X | (Z = z) ∼ N (z , σ)
The parameters are a, b, σ

Variational autoencoder: Bayes net Z → X with factorization
pZ ,X (z , x) = pZ (z)pX |Z (x | z) and

Z ∼ N (0, 1)
X | (Z = z) ∼ N (µθ(z), e

σϕ(z)) where µθ : R → R and σϕ are neural
networks with parameters (weights) θ, ϕ respectively
Note: Even if µθ, σϕ are very deep (flexible), functional form is still
Gaussian

CS236, Stanford University Deep Generative Models Lecture 2 29 / 29

