Maximum Likelihood Learning

Stefano Ermon, Aditya Grover

Stanford University

Lecture 4
Learning a generative model

- We are given a training set of examples, e.g., images of dogs

![Images of dogs]

\[x_i \sim P_{\text{data}} \]

\[i = 1, 2, ..., n \]

- We want to learn a probability distribution \(p(x) \) over images \(x \) such that
 - **Generation**: If we sample \(x_{\text{new}} \sim p(x) \), \(x_{\text{new}} \) should look like a dog (sampling)
 - **Density estimation**: \(p(x) \) should be high if \(x \) looks like a dog, and low otherwise (anomaly detection)
 - **Unsupervised representation learning**: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)

- First question: how to represent \(p_\theta(x) \). Second question: **how to learn it**.
Setting

- Let's assume that the domain is governed by some underlying distribution P_{data}

- We are given a dataset D of m samples from P_{data}
 - Each sample is an assignment of values to (a subset of) the variables, e.g., $(X_{bank} = 1, X_{dollar} = 0, ..., Y = 1)$ or pixel intensities.

- The standard assumption is that the data instances are **independent and identically distributed (IID)**

- We are also given a family of models \mathcal{M}, and our task is to learn some “good” model $\hat{M} \in \mathcal{M}$ (i.e., in this family) that defines a distribution $p_{\hat{M}}$
 - For example, all Bayes nets with a given graph structure, for all possible choices of the CPD tables
 - For example, a FVSBN for all possible choices of the logistic regression parameters. $\mathcal{M} = \{P_{\theta}, \theta \in \Theta\}$, $\theta =$ concatenation of all logistic regression coefficients
The goal of learning is to return a model \hat{M} that precisely captures the distribution P_{data} from which our data was sampled.

This is in general not achievable because of:

- limited data only provides a rough approximation of the true underlying distribution
- computational reasons

Example. Suppose we represent each image with a vector X of 784 binary variables (black vs. white pixel). How many possible states (= possible images) in the model? $2^{784} \approx 10^{236}$. Even 10^7 training examples provide extremely sparse coverage!

We want to select \hat{M} to construct the "best" approximation to the underlying distribution P_{data}.

What is "best"?
What is “best”?

This depends on what we want to do

1. Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)

2. Specific prediction tasks: we are using the distribution to make a prediction
 - Is this email spam or not?
 - Predict next frame in a video

3. Structure or knowledge discovery: we are interested in the model itself
 - How do some genes interact with each other?
 - What causes cancer?
 - Take CS 228
Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query.
- In this setting we can view the learning problem as **density estimation**.
- We want to construct P_θ as "close" as possible to P_{data} (recall we assume we are given a dataset D of samples from P_{data}).

How do we evaluate "closeness"?
How should we measure distance between distributions?

The **Kullback-Leibler divergence** (KL-divergence) between two distributions p and q is defined as

$$D(p \parallel q) = \sum_x p(x) \log \frac{p(x)}{q(x)}.$$

$D(p \parallel q) \geq 0$ for all p, q, with equality if and only if $p = q$. Proof:

$$E_{x \sim p} \left[- \log \frac{q(x)}{p(x)} \right] \geq - \log \left(E_{x \sim p} \left[\frac{q(x)}{p(x)} \right] \right) = - \log \left(\sum_x p(x) \frac{q(x)}{p(x)} \right) = 0$$

Notice that KL-divergence is **asymmetric**, i.e., $D(p \parallel q) \neq D(q \parallel p)$

Measures the expected number of extra bits required to describe *samples from* $p(x)$ using a code based on q instead of p
Detour on KL-divergence

- To compress, it is useful to know the probability distribution the data is sampled from.
- For example, let X_1, \cdots, X_{100} be samples of an unbiased coin. Roughly 50 heads and 50 tails. Optimal compression scheme is to record heads as 0 and tails as 1. In expectation, use 1 bit per sample, and cannot do better.
- Suppose the coin is biased, and $P[H] \gg P[T]$. Then it’s more efficient to use fewer bits on average to represent heads and more bits to represent tails, e.g.
 - Batch multiple samples together
 - Use a short sequence of bits to encode $HHHH$ (common) and a long sequence for $TTTT$ (rare).
 - Like Morse code: $E = \bullet, A = \bullet -$,
 - $Q = -- \bullet -$.
- KL-divergence: if your data comes from p, but you use a scheme optimized for q, the divergence $D_{KL}(p||q)$ is the number of extra bits you’ll need on average.
Learning as density estimation

- We want to learn the full distribution so that later we can answer any probabilistic inference query.

- In this setting we can view the learning problem as **density estimation**.

- We want to construct P_θ as "close" as possible to P_{data} (recall we assume we are given a dataset \mathcal{D} of samples from P_{data}).

- How do we evaluate "closeness"?

- **KL-divergence** is one possibility:

 $$D(P_{\text{data}} \| P_\theta) = \mathbb{E}_{x \sim P_{\text{data}}} \left[\log \left(\frac{P_{\text{data}}(x)}{P_\theta(x)} \right) \right] = \sum_x P_{\text{data}}(x) \log \frac{P_{\text{data}}(x)}{P_\theta(x)}$$

- $D(P_{\text{data}} \| P_\theta) = 0$ iff the two distributions are the same.

- It measures the "compression loss" (in bits) of using P_θ instead of P_{data}.
We can simplify this somewhat:

\[
D(P_{\text{data}} \mid \mid P_\theta) = E_{x \sim P_{\text{data}}} \left[\log \left(\frac{P_{\text{data}}(x)}{P_\theta(x)} \right) \right] \\
= E_{x \sim P_{\text{data}}} [\log P_{\text{data}}(x)] - E_{x \sim P_{\text{data}}} [\log P_\theta(x)]
\]

The first term does not depend on \(P_\theta\).

Then, minimizing KL divergence is equivalent to maximizing the expected log-likelihood

\[
\arg \min_{P_\theta} D(P_{\text{data}} \mid \mid P_\theta) = \arg \min_{P_\theta} -E_{x \sim P_{\text{data}}} [\log P_\theta(x)] = \arg \max_{P_\theta} E_{x \sim P_{\text{data}}} [\log P_\theta(x)]
\]

Asks that \(P_\theta\) assign high probability to instances sampled from \(P_{\text{data}}\), so as to reflect the true distribution

Because of log, samples \(x\) where \(P_\theta(x) \approx 0\) weigh heavily in objective

Although we can now compare models, since we are ignoring \(H(P_{\text{data}})\), we don’t know how close we are to the optimum

Problem: In general we do not know \(P_{\text{data}}\).
Maximum likelihood

- Approximate the expected log-likelihood

$$E_{x \sim P_{\text{data}}} [\log P_\theta(x)]$$

with the empirical log-likelihood:

$$E_D [\log P_\theta(x)] = \frac{1}{|D|} \sum_{x \in D} \log P_\theta(x)$$

- **Maximum likelihood learning** is then:

$$\max_{P_\theta} \frac{1}{|D|} \sum_{x \in D} \log P_\theta(x)$$

- Equivalently, maximize likelihood of the data

$$P_\theta(x^{(1)}, \ldots, x^{(m)}) = \prod_{x \in D} P_\theta(x)$$
Main idea in Monte Carlo Estimation

1. Express the quantity of interest as the expected value of a random variable.

\[E_{x \sim P}[g(x)] = \sum_x g(x)P(x) \]

2. Generate \(T \) samples \(x^1, \ldots, x^T \) from the distribution \(P \) with respect to which the expectation was taken.

3. Estimate the expected value from the samples using:

\[\hat{g}(x^1, \ldots, x^T) \triangleq \frac{1}{T} \sum_{t=1}^{T} g(x^t) \]

where \(x^1, \ldots, x^T \) are independent samples from \(P \). Note: \(\hat{g} \) is a random variable. Why?
Properties of the Monte Carlo Estimate

- **Unbiased:**
 \[E_P[\hat{g}] = E_P[g(x)] \]

- **Convergence:** By law of large numbers
 \[\hat{g} = \frac{1}{T} \sum_{t=1}^{T} g(x^t) \rightarrow E_P[g(x)] \text{ for } T \rightarrow \infty \]

- **Variance:**
 \[V_P[\hat{g}] = V_P \left[\frac{1}{T} \sum_{t=1}^{T} g(x^t) \right] = \frac{V_P[g(x)]}{T} \]

Thus, variance of the estimator can be reduced by increasing the number of samples.
Example

Single variable example: A biased coin

- Two outcomes: heads (H) and tails (T)
- Data set: Tosses of the biased coin, e.g., $\mathcal{D} = \{H, H, T, H, T\}$
- Assumption: the process is controlled by a probability distribution $P_{\text{data}}(x)$ where $x \in \{H, T\}$
- Class of models \mathcal{M}: all probability distributions over $x \in \{H, T\}$.
- Example learning task: How should we choose $P_{\theta}(x)$ from \mathcal{M} if 60 out of 100 tosses are heads in \mathcal{D}?
MLE scoring for the coin example

We represent our model: \(P_\theta(x = H) = \theta \) and \(\hat{p}(x = T) = 1 - \theta \)

- Example data: \(\mathcal{D} = \{H, H, T, H, T\} \)
- Likelihood of data = \(\prod_i P_\theta(x_i) = \theta \cdot \theta \cdot (1 - \theta) \cdot \theta \cdot (1 - \theta) \)

Optimize for \(\theta \) which makes \(\mathcal{D} \) most likely. What is the solution in this case?
MLE scoring for the coin example: Analytical derivation

Distribution: \(\hat{p}(x = H) = \theta \) and \(\hat{p}(x = T) = 1 - \theta \)

- More generally, log-likelihood function

\[
L(\theta) = \theta \#\text{heads} \cdot (1 - \theta) \#\text{tails} \\
\log L(\theta) = \log(\theta \#\text{heads} \cdot (1 - \theta) \#\text{tails}) \\
= \#\text{heads} \cdot \log(\theta) + \#\text{tails} \cdot \log(1 - \theta)
\]

- MLE Goal: Find \(\theta^* \in [0, 1] \) such that \(\log L(\theta^*) \) is maximum.

- Differentiate the log-likelihood function with respect to \(\theta \) and set the derivative to zero. We get:

\[
\theta^* = \frac{\#\text{heads}}{\#\text{heads} + \#\text{tails}}
\]
Extending the MLE principle to a Bayesian network

Given an autoregressive model with n variables and factorization

$$P_{\theta}(x) = \prod_{i=1}^{n} p_{\text{neural}}(x_i|\text{pa}(x_i); \theta_i)$$

Training data $\mathcal{D} = \{x^{(1)}, \ldots, x^{(m)}\}$. Maximum likelihood estimate of the parameters?

- Decomposition of Likelihood function

$$L(\theta, \mathcal{D}) = \prod_{j=1}^{m} P_{\theta}(x^{(j)}) = \prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text{neural}}(x_i^{(j)}|\text{pa}(x_i)^{(j)}; \theta_i)$$

- Goal: maximize $\arg \max_{\theta} L(\theta, \mathcal{D}) = \arg \max_{\theta} \log L(\theta, \mathcal{D})$

- We no longer have a closed form solution
MLE Learning: Gradient Descent

\[L(\theta, \mathcal{D}) = \prod_{j=1}^{m} P_{\theta}(x^{(j)}) = \prod_{j=1}^{m} \prod_{i=1}^{n} p_{\text{neural}}(x_{i}^{(j)} | pa(x_{i})^{(j)}; \theta_i) \]

Goal: maximize \(\arg \max_{\theta} L(\theta, \mathcal{D}) = \arg \max_{\theta} \log L(\theta, \mathcal{D}) \)

\[\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text{neural}}(x_{i}^{(j)} | pa(x_{i})^{(j)}; \theta_i) \]

1. Initialize \(\theta^0 \) at random
2. Compute \(\nabla_{\theta} \ell(\theta) \) (by back propagation)
3. \(\theta^{t+1} = \theta^t + \alpha_t \nabla_{\theta} \ell(\theta) \)

Non-convex optimization problem, but often works well in practice
MLE Learning: Stochastic Gradient Descent

\[\ell(\theta) = \log L(\theta, \mathcal{D}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log p_{\text{neural}}(x_{i}^{(j)}|pa(x_{i})^{(j)}; \theta_{i}) \]

1. Initialize \(\theta^{0} \) at random
2. Compute \(\nabla_{\theta} \ell(\theta) \) (by back propagation)
3. \(\theta^{t+1} = \theta^{t} + \alpha_{t} \nabla_{\theta} \ell(\theta) \)

\[\nabla_{\theta} \ell(\theta) = \sum_{j=1}^{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)}|pa(x_{i})^{(j)}; \theta_{i}) \]

What if \(m = |\mathcal{D}| \) is huge?

\[\nabla_{\theta} \ell(\theta) = m \sum_{j=1}^{m} \frac{1}{m} \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)}|pa(x_{i})^{(j)}; \theta_{i}) \]

\[= m E_{x^{(j)} \sim \mathcal{D}} \left[\sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)}|pa(x_{i})^{(j)}; \theta_{i}) \right] \]

Monte Carlo: Sample \(x^{(j)} \sim \mathcal{D}; \nabla_{\theta} \ell(\theta) \approx m \sum_{i=1}^{n} \nabla_{\theta} \log p_{\text{neural}}(x_{i}^{(j)}|pa(x_{i})^{(j)}; \theta_{i}) \)
Empirical risk and Overfitting

- Empirical risk minimization can easily **overfit** the data
 - Extreme example: The data is the model (remember all training data).

- Generalization: the data is a sample, usually there is vast amount of samples that you have never seen. Your model should generalize well to these “never-seen” samples.

- Thus, we typically restrict the **hypothesis space** of distributions that we search over
If the hypothesis space is very limited, it might not be able to represent P_{data}, even with unlimited data

- This type of limitation is called bias, as the learning is limited on how close it can approximate the target distribution.

If we select a highly expressive hypothesis class, we might represent better the data

- When we have small amount of data, multiple models can fit well, or even better than the true model. Moreover, small perturbations on D will result in very different estimates.
- This limitation is called the variance.
There is an inherent **bias-variance trade off** when selecting the hypothesis class. Error in learning due to both things: bias and variance.

- Hypothesis space: linear relationship
 - Does it fit well? Underfits
- Hypothesis space: high degree polynomial
 - Overfits
- Hypothesis space: low degree polynomial
 - Right tradeoff
How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive hypothesis class:
 - Bayesian networks with at most d parents
 - Smaller neural networks with less parameters
 - Weight sharing
- Soft preference for “simpler” models: Occam Razor.
- Augment the objective function with regularization:

$$\text{objective}(x, \mathcal{M}) = \text{loss}(x, \mathcal{M}) + R(\mathcal{M})$$

- Evaluate generalization performance on a held-out validation set
Conditional generative models

- Suppose we want to generate a set of variables Y given some others X, e.g., text to speech.
- We concentrate on modeling $p(Y|X)$, and use a **conditional** loss function
 \[- \log P_{\theta}(y \mid x).\]
- Since the loss function only depends on $P_{\theta}(y \mid x)$, suffices to estimate the conditional distribution, not the joint distribution.
Recap

- For autoregressive models, it is easy to compute $p_{\theta}(x)$.
 - Ideally, evaluate in parallel each conditional $\log p_{\text{neural}}(x_j^{(i)}|pa(x_i^{(j)}); \theta_i)$.
 - Not like RNNs.

- Natural to train them via maximum likelihood.

- Higher log-likelihood doesn’t necessarily mean better looking samples.

- Other ways of measuring similarity are possible (Generative Adversarial Networks, GANs).