
Maximum Likelihood Learning

Stefano Ermon

Stanford University

Lecture 4

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 1 / 25

Learning a generative model

We are given a training set of examples, e.g., images of dogs

We want to learn a probability distribution p(x) over images x such that

Generation: If we sample xnew ∼ p(x), xnew should look like a dog
(sampling)
Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)
Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

First question: how to represent pθ(x). Second question: how to learn it.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 2 / 25

Setting

Lets assume that the domain is governed by some underlying distribution
Pdata

We are given a dataset D of m samples from Pdata

Each sample is an assignment of values to (a subset of) the variables,
e.g., (Xbank = 1,Xdollar = 0, ...,Y = 1) or pixel intensities.

The standard assumption is that the data instances are independent and
identically distributed (IID)

We are also given a family of models M, and our task is to learn some
“good” distribution in this set:

For example, M could be all Bayes nets with a given graph structure,
for all possible choices of the CPD tables
For example, a FVSBN for all possible choices of the logistic regression
parameters , θ = concatenation of all logistic regression coefficients

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 3 / 25

Goal of learning

The goal of learning is to return a model Pθ that precisely captures the
distribution Pdata from which our data was sampled

This is in general not achievable because of

limited data only provides a rough approximation of the true underlying
distribution
computational reasons

Example. Suppose we represent each image with a vector X of 784 binary
variables (black vs. white pixel). How many possible states (= possible
images) in the model? 2784 ≈ 10236. Even 107 training examples provide
extremely sparse coverage!

We want to select Pθ to construct the ”best” approximation to the
underlying distribution Pdata

What is ”best”?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 4 / 25

What is “best”?

This depends on what we want to do

1 Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

2 Specific prediction tasks: we are using the distribution to make a prediction

Is this email spam or not?
Structured prediction: Predict next frame in a video, or caption given
an image

3 Structure or knowledge discovery: we are interested in the model itself

How do some genes interact with each other?
What causes cancer?
Take CS 228

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 5 / 25

Learning as density estimation

We want to learn the full distribution so that later we can answer any
probabilistic inference query

In this setting we can view the learning problem as density estimation

We want to construct Pθ as ”close” as possible to Pdata (recall we assume
we are given a dataset D of samples from Pdata)

How do we evaluate ”closeness”?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 6 / 25

KL-divergence

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(p∥q) =
∑
x

p(x) log
p(x)

q(x)
.

D(p ∥ q) ≥ 0 for all p, q, with equality if and only if p = q. Proof:

Ex∼p

[
− log

q(x)

p(x)

]
≥ − log

(
Ex∼p

[
q(x)

p(x)

])
= − log

(∑
x

p(x)
q(x)

p(x)

)
= 0

Notice that KL-divergence is asymmetric, i.e., D(p∥q) ̸= D(q∥p)
Measures the expected number of extra bits required to describe
samples from p(x) using a compression code based on q instead of p

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 7 / 25

Detour on KL-divergence

To compress, it is useful to know the probability distribution the data
is sampled from

For example, let X1, · · · ,X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme is to
record heads as 0 and tails as 1. In expectation, use 1 bit per sample,
and cannot do better

Suppose the coin is biased, and P[H] ≫ P[T]. Then it’s more
efficient to uses fewer bits on average to represent heads and more
bits to represent tails, e.g.

Batch multiple samples together
Use a short sequence of bits to encode HHHH (common) and a long
sequence for TTTT (rare).
Like Morse code: E = •, A = •−, Q = −− •−

KL-divergence: if your data comes from p, but you use a scheme
optimized for q, the divergence DKL(p||q) is the number of extra bits
you’ll need on average

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 8 / 25

Learning as density estimation

We want to learn the full distribution so that later we can answer any
probabilistic inference query

In this setting we can view the learning problem as density estimation

We want to construct Pθ as ”close” as possible to Pdata (recall we assume
we are given a dataset D of samples from Pdata)

How do we evaluate ”closeness”?

KL-divergence is one possibility:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
=
∑
x

Pdata(x) log
Pdata(x)

Pθ(x)

D(Pdata||Pθ) = 0 iff the two distributions are the same.

It measures the ”compression loss” (in bits) of using Pθ instead of Pdata.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 9 / 25

Expected log-likelihood

We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

The first term does not depend on Pθ.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
Pθ

D(Pdata||Pθ) = argmin
Pθ

−Ex∼Pdata [logPθ(x)] = argmax
Pθ

Ex∼Pdata [logPθ(x)]

Asks that Pθ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring
H(Pdata) = −Ex∼Pdata

[logPdata(x)], we don’t know how close we are to the
optimum

Problem: In general we do not know Pdata.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 10 / 25

Maximum likelihood

Approximate the expected log-likelihood

Ex∼Pdata
[logPθ(x)]

with the empirical log-likelihood:

ED [logPθ(x)] =
1

|D|
∑
x∈D

logPθ(x)

Maximum likelihood learning is then:

max
Pθ

1

|D|
∑
x∈D

logPθ(x)

Equivalently, maximize likelihood of the data
Pθ(x(1), · · · , x(m)) =

∏
x∈D Pθ(x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 11 / 25

Main idea in Monte Carlo Estimation

1 Express the quantity of interest as the expected value of a
random variable.

Ex∼P [g(x)] =
∑
x

g(x)P(x)

2 Generate T samples x1, . . . , xT from the distribution P with respect
to which the expectation was taken.

3 Estimate the expected value from the samples using:

ĝ(x1, · · · , xT) ≜ 1

T

T∑
t=1

g(xt)

where x1, . . . , xT are independent samples from P. Note: ĝ is a
random variable. Why?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 12 / 25

Properties of the Monte Carlo Estimate

Unbiased:
EP [ĝ] = EP [g(x)]

Convergence: By law of large numbers

ĝ =
1

T

T∑
t=1

g(x t) → EP [g(x)] for T → ∞

Variance:

VP [ĝ] = VP

[
1

T

T∑
t=1

g(x t)

]
=

VP [g(x)]

T

Thus, variance of the estimator can be reduced by increasing the
number of samples.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 13 / 25

Example

Single variable example: A biased coin

Two outcomes: heads (H) and tails (T)

Data set: Tosses of the biased coin, e.g., D = {H,H,T ,H,T}
Assumption: the process is controlled by a probability distribution
Pdata(x) where x ∈ {H,T}
Class of models M: all probability distributions over x ∈ {H,T}.
Example learning task: How should we choose Pθ(x) from M if 3 out
of 5 tosses are heads in D?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 14 / 25

MLE scoring for the coin example

We represent our model: Pθ(x = H) = θ and Pθ(x = T) = 1− θ

Example data: D = {H,H,T ,H,T}
Likelihood of data =

∏
i Pθ(xi) = θ · θ · (1− θ) · θ · (1− θ)

Optimize for θ which makes D most likely. What is the solution in
this case? θ = 0.6, optimization problem can be solved in closed-form

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 15 / 25

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

Pθ(x) =
n∏

i=1

pneural(xi |x<i ; θi)

θ = (θ1, · · · , θn) are the parameters of all the conditionals. Training data
D = {x(1), · · · , x(m)}. Maximum likelihood estimate of the parameters θ?

Decomposition of Likelihood function

L(θ,D) =
m∏
j=1

Pθ(x
(j)) =

m∏
j=1

n∏
i=1

pneural(x
(j)
i |x(j)<i ; θi)

Goal : maximize argmaxθ L(θ,D) = argmaxθ log L(θ,D)

We no longer have a closed form solution

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 16 / 25

MLE Learning: Gradient Descent

L(θ,D) =
m∏
j=1

Pθ(x
(j)) =

m∏
j=1

n∏
i=1

pneural(x
(j)
i |x(j)<i ; θi)

Goal : maximize argmaxθ L(θ,D) = argmaxθ log L(θ,D)

ℓ(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x(j)<i ; θi)

1 Initialize θ0 = (θ1, · · · , θn) at random
2 Compute ∇θℓ(θ) (by back propagation)

3 θt+1 = θt + αt∇θℓ(θ)

Non-convex optimization problem, but often works well in practice

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 17 / 25

MLE Learning: Stochastic Gradient Descent

ℓ(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x(j)<i ; θi)

1 Initialize θ0 at random

2 Compute ∇θℓ(θ) (by back propagation)

3 θt+1 = θt + αt∇θℓ(θ)

What is the gradient with respect to θi?

∇θi ℓ(θ) =
m∑
j=1

∇θi

n∑
i=1

log pneural(x
(j)
i |x(j)<i ; θi) =

m∑
j=1

∇θi log pneural(x
(j)
i |x(j)<i ; θi)

Each conditional pneural(xi |x<i ; θi) can be optimized separately if there is no
parameter sharing. In practice, parameters θi are shared (e.g., NADE, PixelRNN,
PixelCNN, etc.)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 18 / 25

MLE Learning: Stochastic Gradient Descent

ℓ(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x(j)<i ; θi)

1 Initialize θ0 at random

2 Compute ∇θℓ(θ) (by back propagation)

3 θt+1 = θt + αt∇θℓ(θ)

∇θℓ(θ) =
m∑
j=1

n∑
i=1

∇θ log pneural(x
(j)
i |x(j)<i ; θi)

What if m = |D| is huge?

∇θℓ(θ) = m
m∑
j=1

1

m

n∑
i=1

∇θ log pneural(x
(j)
i |x(j)<i ; θi)

= mEx (j)∼D

[
n∑

i=1

∇θ log pneural(x
(j)
i |x(j)<i ; θi)

]

Monte Carlo: Sample x (j) ∼ D;∇θℓ(θ) ≈ m
∑n

i=1 ∇θ log pneural(x
(j)
i |x(j)<i ; θi)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 19 / 25

Empirical Risk and Overfitting

Empirical risk minimization can easily overfit the data

Extreme example: The data is the model (remember all training data).

Generalization: the data is a sample, usually there is vast amount of samples
that you have never seen. Your model should generalize well to these
“never-seen” samples.

Thus, we typically restrict the hypothesis space of distributions that we
search over

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 20 / 25

Bias-Variance trade off

If the hypothesis space is very limited, it might not be able to represent
Pdata, even with unlimited data

This type of limitation is called bias, as the learning is limited on how
close it can approximate the target distribution

If we select a highly expressive hypothesis class, we might represent better
the data

When we have small amount of data, multiple models can fit well, or
even better than the true model. Moreover, small perturbations on D
will result in very different estimates
This limitation is call the variance.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 21 / 25

Bias-Variance trade off

There is an inherent bias-variance trade off when selecting the hypothesis
class. Error in learning due to both things: bias and variance.

Hypothesis space: linear relationship

Does it fit well? Underfits

Hypothesis space: high degree polynomial

Overfits

Hypothesis space: low degree polynomial

Right tradeoff

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 22 / 25

How to avoid overfitting?

Hard constraints, e.g. by selecting a less expressive model family:

Smaller neural networks with less parameters
Weight sharing

Soft preference for “simpler” models: Occam Razor.

Augment the objective function with regularization:

objective(x,M) = loss(x,M) + R(M)

Evaluate generalization performance on a held-out validation set

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 23 / 25

Conditional generative models

Suppose we want to generate a set of variables Y given some others
X, e.g., text to speech

We concentrate on modeling p(Y|X), and use a conditional loss
function

− logPθ(y | x).

Since the loss function only depends on Pθ(y | x), suffices to estimate
the conditional distribution, not the joint

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 24 / 25

Recap

For autoregressive models, it is easy to compute pθ(x)

Ideally, evaluate in parallel each conditional log pneural(x
(j)
i |x(j)<i ; θi).

Not like RNNs.

Natural to train them via maximum likelihood

Higher log-likelihood doesn’t necessarily mean better looking samples

Other ways of measuring similarity are possible (Generative Adversarial
Networks, GANs)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 4 25 / 25

