Recap of last lecture

1. Autoregressive models:
 - Chain rule based factorization is fully general
 - Compact representation via *conditional independence* and/or *neural parameterizations*

2. Autoregressive models Pros:
 - Easy to evaluate likelihoods
 - Easy to train

3. Autoregressive models Cons:
 - Requires an ordering
 - Generation is sequential
 - Cannot learn features in an unsupervised way
Plan for today

1. Latent Variable Models
 - Mixture models
 - Variational autoencoder
 - Variational inference and learning
Lots of variability in images x due to gender, eye color, hair color, pose, etc. However, unless images are annotated, these factors of variation are not explicitly available (latent).

Idea: explicitly model these factors using latent variables z.
1. Only shaded variables x are observed in the data (pixel values)
2. Latent variables z correspond to high level features
 - If z chosen properly, $p(x|z)$ could be much simpler than $p(x)$
 - If we had trained this model, then we could identify features via $p(z|x)$, e.g., $p(\text{EyeColor} = \text{Blue}|x)$
3. Challenge: Very difficult to specify these conditionals by hand
Deep Latent Variable Models

1. \(z \sim \mathcal{N}(0, I) \)
2. \(p(x \mid z) = \mathcal{N}(\mu_\theta(z), \Sigma_\theta(z)) \) where \(\mu_\theta, \Sigma_\theta \) are neural networks
3. Hope that after training, \(z \) will correspond to meaningful latent factors of variation (features). Unsupervised representation learning.
4. As before, features can be computed via \(p(z \mid x) \)
Mixture of Gaussians. Bayes net: \(z \rightarrow x \).

1. \(z \sim \text{Categorical}(1, \cdots, K) \)
2. \(p(x \mid z = k) = \mathcal{N}(\mu_k, \Sigma_k) \)

Generative process

1. Pick a mixture component \(k \) by sampling \(z \)
2. Generate a data point by sampling from that Gaussian
Mixture of Gaussians: a Shallow Latent Variable Model

1. \(z \sim \text{Categorical}(1, \cdots, K) \)
2. \(p(x \mid z = k) = \mathcal{N}(\mu_k, \Sigma_k) \)

Clustering: The posterior \(p(z \mid x) \) identifies the mixture component

Unsupervised learning: We are hoping to learn from unlabeled data (ill-posed problem)
Unsupervised learning
Shown is the posterior probability that a data point was generated by the i-th mixture component, $P(z = i| x)$
Unsupervised clustering of handwritten digits.
Mixture models

Combine simple models into a more complex and expressive one

\[
p(x) = \sum_z p(x, z) = \sum_z p(z)p(x | z) = \sum_{k=1}^K p(z = k) \mathcal{N}(x; \mu_k, \Sigma_k)
\]
A mixture of an infinite number of Gaussians:

1. $z \sim \mathcal{N}(0, I)$
2. $p(x \mid z) = \mathcal{N}(\mu_\theta(z), \Sigma_\theta(z))$ where $\mu_\theta, \Sigma_\theta$ are neural networks
 - $\mu_\theta(z) = \sigma(Az + c) = (\sigma(a_1z + c_1), \sigma(a_2z + c_2)) = (\mu_1(z), \mu_2(z))$
 - $\Sigma_\theta(z) = \text{diag}(\exp(\sigma(Bz + d))) = \begin{pmatrix} \exp(\sigma(b_1z+d_1)) & 0 \\ 0 & \exp(\sigma(b_2z+d_2)) \end{pmatrix}$
 - $\theta = (A, B, c, d)$
3. Even though $p(x \mid z)$ is simple, the marginal $p(x)$ is very complex/flexible
Latent Variable Models

- Allow us to define complex models $p(x)$ in terms of simple building blocks $p(x \mid z)$
- Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
- No free lunch: much more difficult to learn compared to fully observed, autoregressive models
Marginal Likelihood

- Suppose some pixel values are missing at train time (e.g., top half)
- Let \(X \) denote observed random variables, and \(Z \) the unobserved ones (also called hidden or latent)
- Suppose we have a model for the joint distribution (e.g., PixelCNN)

\[
p(X, Z; \theta)
\]

What is the probability \(p(X = \bar{x}; \theta) \) of observing a training data point \(\bar{x} \)?

\[
\sum_z p(X = \bar{x}, Z = z; \theta) = \sum_z p(\bar{x}, z; \theta)
\]

- Need to consider all possible ways to complete the image (fill green part)
Variational Autoencoder Marginal Likelihood

A mixture of an infinite number of Gaussians:

1. \(z \sim \mathcal{N}(0, I) \)
2. \(p(x \mid z) = \mathcal{N}(\mu_\theta(z), \Sigma_\theta(z)) \) where \(\mu_\theta, \Sigma_\theta \) are neural networks
3. \(Z \) are unobserved at train time (also called hidden or latent)
4. Suppose we have a model for the joint distribution. What is the probability \(p(X = \bar{x}; \theta) \) of observing a training data point \(\bar{x} \)?

\[
\int_z p(X = \bar{x}, Z = z; \theta)dz = \int_z p(\bar{x}, z; \theta)dz
\]
Partially observed data

- Suppose that our joint distribution is
 \[p(\mathbf{X}, \mathbf{Z}; \theta) \]

- We have a dataset \(\mathcal{D} \), where for each datapoint the \(\mathbf{X} \) variables are observed (e.g., pixel values) and the variables \(\mathbf{Z} \) are never observed (e.g., cluster or class id.). \(\mathcal{D} = \{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(M)}\} \).

- Maximum likelihood learning:
 \[
 \log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log p(\mathbf{x}; \theta) = \sum_{\mathbf{x} \in \mathcal{D}} \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta)
 \]

- Evaluating \(\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta) \) can be intractable. Suppose we have 30 binary latent features, \(\mathbf{z} \in \{0, 1\}^{30} \). Evaluating \(\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta) \) involves a sum with \(2^{30} \) terms. For continuous variables, \(\log \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta) d\mathbf{z} \) is often intractable. Gradients \(\nabla_{\theta} \) also hard to compute.

- Need **approximations**. One gradient evaluation per training data point \(\mathbf{x} \in \mathcal{D} \), so approximation needs to be cheap.
First attempt: Naive Monte Carlo

Likelihood function \(p_\theta(x) \) for Partially Observed Data is hard to compute:

\[
p_\theta(x) = \sum_{\text{All values of } z} p_\theta(x, z) = |Z| \sum_{z \in Z} \frac{1}{|Z|} p_\theta(x, z) = |Z| \mathbb{E}_{z \sim \text{Uniform}(Z)} [p_\theta(x, z)]
\]

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

1. Sample \(z^{(1)}, \ldots, z^{(k)} \) uniformly at random
2. Approximate expectation with sample average

\[
\sum_{z} p_\theta(x, z) \approx |Z| \frac{1}{k} \sum_{j=1}^{k} p_\theta(x, z^{(j)})
\]

Works in theory but not in practice. For most \(z \), \(p_\theta(x, z) \) is very low (most completions don't make sense). Some are very large but will never "hit" likely completions by uniform random sampling. Need a clever way to select \(z^{(j)} \) to reduce variance of the estimator.
Likelihood function $p_\theta(x)$ for Partially Observed Data is hard to compute:

$$p_\theta(x) = \sum_{\text{All possible values of } z} p_\theta(x, z)$$

Monte Carlo to the rescue:

1. Sample $z^{(1)}, \ldots, z^{(k)}$ from $q(z)$
2. Approximate expectation with sample average

$$p_\theta(x) \approx \frac{1}{k} \sum_{j=1}^{k} \frac{p_\theta(x, z^{(j)})}{q(z^{(j)})}$$

What is a good choice for $q(z)$? Intuitively, choose likely completions. It would then be tempting to estimate the log-likelihood as:

$$\log \left(p_\theta(x) \right) \approx \log \left(\frac{1}{k} \sum_{j=1}^{k} \frac{p_\theta(x, z^{(j)})}{q(z^{(j)})} \right) \approx \log \left(\frac{p_\theta(x, z^{(1)})}{q(z^{(1)})} \right)$$

However, it’s clear that $\mathbb{E}_{z^{(1)} \sim q(z)} \left[\log \left(\frac{p_\theta(x, z^{(1)})}{q(z^{(1)})} \right) \right] \neq \log \left(\mathbb{E}_{z^{(1)} \sim q(z)} \left[\frac{p_\theta(x, z^{(1)})}{q(z^{(1)})} \right] \right)$
Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

$$\log \left(\sum_{z \in Z} p_\theta(x, z) \right) = \log \left(\sum_{z \in Z} \frac{q(z)}{q(z)} p_\theta(x, z) \right) = \log \left(\mathbb{E}_{z \sim q(z)} \left[\frac{p_\theta(x, z)}{q(z)} \right] \right)$$

- log() is a concave function. $\log(px + (1-p)x') \geq p \log(x) + (1-p) \log(x')$.
- Idea: use Jensen Inequality (for concave functions)

$$\log \left(\mathbb{E}_{z \sim q(z)} \left[f(z) \right] \right) = \log \left(\sum_{z} q(z) f(z) \right) \geq \sum_{z} q(z) \log f(z)$$
Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

\[
\log \left(\sum_{z \in Z} p_\theta(x, z) \right) = \log \left(\sum_{z \in Z} \frac{q(z)}{q(z)} p_\theta(x, z) \right) = \log \left(\mathbb{E}_{z \sim q(z)} \left[\frac{p_\theta(x, z)}{q(z)} \right] \right)
\]

- \(\log() \) is a concave function. \(\log(px + (1 - p)x') \geq p \log(x) + (1 - p) \log(x') \).
- Idea: use Jensen Inequality (for concave functions)

\[
\log \left(\mathbb{E}_{z \sim q(z)} [f(z)] \right) = \log \left(\sum_z q(z)f(z) \right) \geq \sum_z q(z) \log f(z)
\]

Choosing \(f(z) = \frac{p_\theta(x, z)}{q(z)} \)

\[
\log \left(\mathbb{E}_{z \sim q(z)} \left[\frac{p_\theta(x, z)}{q(z)} \right] \right) \geq \mathbb{E}_{z \sim q(z)} \left[\log \left(\frac{p_\theta(x, z)}{q(z)} \right) \right]
\]

Called Evidence Lower Bound (ELBO).
Variational inference

- Suppose $q(z)$ is any probability distribution over the hidden variables.

- **Evidence lower bound** (ELBO) holds for any q

 \[
 \log p(x; \theta) \geq \sum_z q(z) \log \left(\frac{p_\theta(x, z)}{q(z)} \right)
 \]

 \[
 = \sum_z q(z) \log p_\theta(x, z) - \sum_z q(z) \log q(z)
 \]

 \[
 \quad \underbrace{\text{Entropy } H(q) \text{ of } q}_{\text{Entropy}}
 \]

 \[
 = \sum_z q(z) \log p_\theta(x, z) + H(q)
 \]

- Equality holds if $q = p(z|x; \theta)$

 \[
 \log p(x; \theta) = \sum_z q(z) \log p(z, x; \theta) + H(q)
 \]

- (Aside: This is what we compute in the E-step of the EM algorithm)
Why is the bound tight

- We derived this lower bound that holds for any choice of $q(z)$:

$$
\log p(x; \theta) \geq \sum_z q(z) \log \frac{p(x, z; \theta)}{q(z)}
$$

- If $q(z) = p(z|x; \theta)$ the bound becomes:

$$
\sum_z p(z|x; \theta) \log \frac{p(x, z; \theta)}{p(z|x; \theta)} = \sum_z p(z|x; \theta) \log \frac{p(z|x; \theta)p(x; \theta)}{p(z|x; \theta)}
$$

\[
\begin{align*}
&= \sum_z p(z|x; \theta) \log p(x; \theta) \\
&= \log p(x; \theta) \sum_z p(z|x; \theta) \\
&= \log p(x; \theta)
\end{align*}
\]

- Confirms our previous importance sampling intuition: we should choose likely completions.

- What if the posterior $p(z|x; \theta)$ is intractable to compute? How loose is the bound?
Variational inference continued

- Suppose \(q(z) \) is any probability distribution over the hidden variables. A little bit of algebra reveals

\[
D_{KL}(q(z)\|p(z|x; \theta)) = -\sum_z q(z) \log p(z, x; \theta) + \log p(x; \theta) - H(q) \geq 0
\]

- Rearranging, we re-derived the **Evidence lower bound** (ELBO)

\[
\log p(x; \theta) \geq \sum_z q(z) \log p(z, x; \theta) + H(q)
\]

- Equality holds if \(q = p(z|x; \theta) \) because \(D_{KL}(q(z)\|p(z|x; \theta)) = 0 \)

\[
\log p(x; \theta) = \sum_z q(z) \log p(z, x; \theta) + H(q)
\]

- In general, \(\log p(x; \theta) = \text{ELBO} + D_{KL}(q(z)\|p(z|x; \theta)) \). The closer \(q(z) \) is to \(p(z|x; \theta) \), the closer the ELBO is to the true log-likelihood
The Evidence Lower bound

What if the posterior $p(z|x; \theta)$ is intractable to compute?

Suppose $q(z; \phi)$ is a (tractable) probability distribution over the hidden variables parameterized by ϕ (variational parameters)

- For example, a Gaussian with mean and covariance specified by ϕ

$$q(z; \phi) = \mathcal{N}(\phi_1, \phi_2)$$

Variational inference: pick ϕ so that $q(z; \phi)$ is as close as possible to $p(z|x; \theta)$. In the figure, the posterior $p(z|x; \theta)$ (blue) is better approximated by $\mathcal{N}(2, 2)$ (orange) than $\mathcal{N}(-4, 0.75)$ (green)
A variational approximation to the posterior

- Assume $p(x^{top}, x^{bottom}; \theta)$ assigns high probability to images that look like digits. In this example, we assume $z = x^{top}$ are unobserved (latent).

- Suppose $q(x^{top}; \phi)$ is a (tractable) probability distribution over the hidden variables (missing pixels in this example) x^{top} parameterized by ϕ (variational parameters).

$$q(x^{top}; \phi) = \prod_{\text{unobserved variables } x^{top}_i} (\phi_i)^{x^{top}_i} (1 - \phi_i)^{(1-x^{top}_i)}$$

- Is $\phi_i = 0.5 \; \forall i$ a good approximation to the posterior $p(x^{top}|x^{bottom}; \theta)$? No
- Is $\phi_i = 1 \; \forall i$ a good approximation to the posterior $p(x^{top}|x^{bottom}; \theta)$? No
- Is $\phi_i \approx 1$ for pixels i corresponding to the top part of digit 9 a good approximation? Yes
The Evidence Lower bound

\[\log p(x; \theta) \geq \sum_z q(z; \phi) \log p(z, x; \theta) + H(q(z; \phi)) = \mathcal{L}(x; \theta, \phi) \]

\[= \mathcal{L}(x; \theta, \phi) + D_{KL}(q(z; \phi)\|p(z|x; \theta)) \]

The better \(q(z; \phi) \) can approximate the posterior \(p(z|x; \theta) \), the smaller \(D_{KL}(q(z; \phi)\|p(z|x; \theta)) \) we can achieve, the closer ELBO will be to \(\log p(x; \theta) \). Next: jointly optimize over \(\theta \) and \(\phi \) to maximize the ELBO over a dataset.
Summary

- **Latent Variable Models Pros:**
 - Easy to build flexible models
 - Suitable for unsupervised learning

- **Latent Variable Models Cons:**
 - Hard to evaluate likelihoods
 - Hard to train via maximum-likelihood
 - Fundamentally, the challenge is that posterior inference $p(z \mid x)$ is hard. Typically requires variational approximations

- **Alternative:** give up on KL-divergence and likelihood (GANs)