
Normalizing Flow Models

Stefano Ermon

Stanford University

Lecture 7

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 1 / 19

Recap of likelihood-based learning so far:

Model families:

Autoregressive Models: pθ(x) =
∏n

i=1 pθ(xi |x<i)
Variational Autoencoders: pθ(x) =

∫
pθ(x, z)dz

Autoregressive models provide tractable likelihoods but no direct
mechanism for learning features

Variational autoencoders can learn feature representations (via latent
variables z) but have intractable marginal likelihoods

Key question: Can we design a latent variable model with tractable
likelihoods? Yes!

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 2 / 19

Simple Prior to Complex Data Distributions

Desirable properties of any model distribution pθ(x):
Easy-to-evaluate, closed form density (useful for training)
Easy-to-sample (useful for generation)

Many simple distributions satisfy the above properties e.g., Gaussian,
uniform distributions

Unfortunately, data distributions are more complex (multi-modal)

Key idea behind flow models: Map simple distributions (easy to
sample and evaluate densities) to complex distributions through an
invertible transformation.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 3 / 19

Variational Autoencoder

A flow model is similar to a variational autoencoder (VAE):
1 Start from a simple prior: z ∼ N (0, I) = p(z)
2 Transform via p(x | z) = N (µθ(z),Σθ(z))
3 Even though p(z) is simple, the marginal pθ(x) is very

complex/flexible. However, pθ(x) =
∫
pθ(x, z)dz is expensive to

compute: need to enumerate all z that could have generated x
4 What if we could easily ”invert” p(x | z) and compute p(z | x) by

design? How? Make x = fθ(z) a deterministic and invertible function
of z, so for any x there is a unique corresponding z (no enumeration)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 4 / 19

Continuous random variables refresher

Let X be a continuous random variable

The cumulative density function (CDF) of X is FX (a) = P(X ≤ a)

The probability density function (pdf) of X is pX (a) = F ′
X (a) =

dFX (a)
da

Typically consider parameterized densities:

Gaussian: X ∼ N (µ, σ) if pX (x) =
1

σ
√
2π
e−(x−µ)2/2σ2

Uniform: X ∼ U(a, b) if pX (x) = 1
b−a1[a ≤ x ≤ b]

Etc.

If X is a continuous random vector, we can usually represent it using
its joint probability density function:

Gaussian: if pX (x) =
1√

(2π)n|Σ|
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 5 / 19

Change of Variables formula

Let Z be a uniform random variable U [0, 2] with density pZ . What is
pZ (1)?

1
2

As a sanity check,
∫ 2

0
1
2 = 1

Let X = 4Z , and let pX be its density. What is pX (4)?

pX (4) = p(X = 4) = p(4Z = 4) = p(Z = 1) = pZ (1) = 1/2 Wrong!

Clearly, X is uniform in [0, 8], so pX (4) = 1/8

To get correct result, need to use change of variables formula

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 6 / 19

Change of Variables formula

Change of variables (1D case): If X = f (Z) and f (·) is monotone
with inverse Z = f −1(X) = h(X), then:

pX (x) = pZ (h(x))|h′(x)|

Previous example: If X = f (Z) = 4Z and Z ∼ U [0, 2], what is
pX (4)?

Note that h(X) = X/4
pX (4) = pZ (1)h

′(4) = 1/2× |1/4| = 1/8

More interesting example: If X = f (Z) = exp(Z) and Z ∼ U [0, 2],
what is pX (x)?

Note that h(X) = ln(X)
pX (x) = pZ (ln(x))|h′(x)| = 1

2x for x ∈ [exp(0), exp(2)]

Note that the ”shape” of pX (x) is different (more complex) from that
of the prior pZ (z).

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 7 / 19

Change of Variables formula

Change of variables (1D case): If X = f (Z) and f (·) is monotone
with inverse Z = f −1(X) = h(X), then:

pX (x) = pZ (h(x))|h′(x)|

Proof sketch: Assume f (·) is monotonically increasing

FX (x) = p[X ≤ x] = p[f (Z) ≤ x] = p[Z ≤ h(x)] = FZ (h(x))

Taking derivatives on both sides:

pX (x) =
dFX (x)

dx
=

dFZ (h(x))

dx
= pZ (h(x))h

′(x)

Recall from basic calculus that h′(x) = [f −1]′(x) = 1
f ′(f −1(x))

. So

letting z = h(x) = f −1(x) we can also write

pX (x) = pZ (z)
1

f ′(z)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 8 / 19

Geometry: Determinants and volumes

Let Z be a uniform random vector in [0, 1]n

Let X = AZ for a square invertible matrix A, with inverse W = A−1.
How is X distributed?

Geometrically, the matrix A maps the unit hypercube [0, 1]n to a
parallelotope

Hypercube and parallelotope are generalizations of square/cube and
parallelogram/parallelopiped to higher dimensions

Figure: The matrix A =

(
a c
b d

)
maps a unit square to a parallelogram

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 9 / 19

Geometry: Determinants and volumes

The volume of the parallelotope is equal to the absolute value of the
determinant of the matrix A

det(A) = det

(
a c
b d

)
= ad − bc

Let X = AZ for a square invertible matrix A, with inverse W = A−1.
X is uniformly distributed over the parallelotope of area |det(A)|.
Hence, we have

pX (x) = pZ (W x) / |det(A)|
= pZ (W x) |det(W)|

because if W = A−1, det(W) = 1
det(A) . Note similarity with 1D case

formula.
Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 10 / 19

Generalized change of variables

For linear transformations specified via A, change in volume is given
by the determinant of A
For non-linear transformations f(·), the linearized change in volume is
given by the determinant of the Jacobian of f(·).
Change of variables (General case): The mapping between Z and
X , given by f : Rn 7→ Rn, is invertible such that X = f(Z) and
Z = f−1(X).

pX (x) = pZ
(
f−1(x)

) ∣∣∣∣det(∂f−1(x)

∂x

)∣∣∣∣
Note 0: generalizes the previous 1D case pX (x) = pZ (h(x))|h′(x)|
Note 1: unlike VAEs, x, z need to be continuous and have the same
dimension. For example, if x ∈ Rn then z ∈ Rn

Note 2: For any invertible matrix A, det(A−1) = det(A)−1

pX (x) = pZ (z)

∣∣∣∣det(∂f(z)

∂z

)∣∣∣∣−1

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 11 / 19

Two Dimensional Example

Let Z1 and Z2 be continuous random variables with joint density
pZ1,Z2 .

Let u : R2 → R2 be an invertible transformation. Two inputs and two
outputs, denoted u = (u1, u2)

Let v = (v1, v2) be its inverse transformation

Let X1 = u1(Z1,Z2) and X2 = u2(Z1,Z2) Then, Z1 = v1(X1,X2) and
Z2 = v2(X1,X2)

pX1,X2(x1, x2)

= pZ1,Z2(v1(x1, x2), v2(x1, x2))

∣∣∣∣∣det
(

∂v1(x1,x2)
∂x1

∂v1(x1,x2)
∂x2

∂v2(x1,x2)
∂x1

∂v2(x1,x2)
∂x2

)∣∣∣∣∣ (inverse)
= pZ1,Z2(z1, z2)

∣∣∣∣∣det
(

∂u1(z1,z2)
∂z1

∂u1(z1,z2)
∂z2

∂u2(z1,z2)
∂z1

∂u2(z1,z2)
∂z2

)∣∣∣∣∣
−1

(forward)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 12 / 19

Normalizing flow models

Consider a directed, latent-variable model over observed variables X
and latent variables Z

In a normalizing flow model, the mapping between Z and X , given
by fθ : Rn 7→ Rn, is deterministic and invertible such that X = fθ(Z)
and Z = f−1

θ (X)

Using change of variables, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1
θ (x)

) ∣∣∣∣∣det
(
∂f−1

θ (x)

∂x

)∣∣∣∣∣
Note: x, z need to be continuous and have the same dimension.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 13 / 19

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after
applying an invertible transformation
Flow: Invertible transformations can be composed with each other

zm = fmθ ◦ · · · ◦ f1θ (z0) = fmθ (fm−1
θ (· · · (f1θ (z0)))) ≜ fθ(z0)

Start with a simple distribution for z0 (e.g., Gaussian)

Apply a sequence of M invertible transformations to finally obtain
x = zM

By change of variables

pX (x; θ) = pZ
(
f−1
θ (x)

) M∏
m=1

∣∣∣∣det(∂(fmθ)−1(zm)

∂zm

)∣∣∣∣
(Note: determininant of product equals product of determinants)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 14 / 19

Planar flows (Rezende & Mohamed, 2016)

Base distribution: Gaussian

Base distribution: Uniform

10 planar transformations can transform simple distributions into a
more complex one

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 15 / 19

Learning and Inference

Learning via maximum likelihood over the dataset D

max
θ

log pX (D; θ) =
∑
x∈D

log pZ
(
f−1
θ (x)

)
+ log

∣∣∣∣∣det
(
∂f−1

θ (x)

∂x

)∣∣∣∣∣
Exact likelihood evaluation via inverse tranformation x 7→ z and
change of variables formula

Sampling via forward transformation z 7→ x

z ∼ pZ (z) x = fθ(z)

Latent representations inferred via inverse transformation (no
inference network required!)

z = f−1
θ (x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 16 / 19

Desiderata for flow models

Simple prior pZ (z) that allows for efficient sampling and tractable
likelihood evaluation. E.g., isotropic Gaussian

Invertible transformations with tractable evaluation:

Likelihood evaluation requires efficient evaluation of x 7→ z mapping
Sampling requires efficient evaluation of z 7→ x mapping

Computing likelihoods also requires the evaluation of determinants of
n × n Jacobian matrices, where n is the data dimensionality

Computing the determinant for an n × n matrix is O(n3): prohibitively
expensive within a learning loop!
Key idea: Choose tranformations so that the resulting Jacobian matrix
has special structure. For example, the determinant of a triangular
matrix is the product of the diagonal entries, i.e., an O(n) operation

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 17 / 19

Triangular Jacobian

x = (x1, · · · , xn) = f(z) = (f1(z), · · · , fn(z))

J =
∂f

∂z
=

 ∂f1
∂z1

· · · ∂f1
∂zn

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn

Suppose xi = fi (z) only depends on z≤i . Then

J =
∂f

∂z
=

 ∂f1
∂z1

· · · 0

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn

has lower triangular structure. Determinant can be computed in linear
time. Similarly, the Jacobian is upper triangular if xi only depends on z≥i

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 18 / 19

Planar flows (Rezende & Mohamed, 2016)

Planar flow. Invertible transformation

x = fθ(z) = z+ uh(wTz+ b)

parameterized by θ = (w,u, b) where h(·) is a non-linearity

Absolute value of the determinant of the Jacobian is given by∣∣∣∣det∂fθ(z)∂z

∣∣∣∣ = ∣∣∣det(I + h′(wTz+ b)uwT)
∣∣∣

=
∣∣∣1 + h′(wTz+ b)uTw

∣∣∣
(matrix determinant lemma)

Need to restrict parameters and non-linearity for the mapping to be
invertible. For example, h = tanh() and h′(wTz+ b)uTw ≥ −1

Stefano Ermon (AI Lab) Deep Generative Models Lecture 7 19 / 19

