Recap of normalizing flow models

So far

- Transform simple to complex distributions via sequence of invertible transformations
- Directed latent variable models with marginal likelihood given by the change of variables formula
- Triangular Jacobian permits efficient evaluation of log-likelihoods

Plan for today

- Invertible transformations with diagonal Jacobians (NICE, Real-NVP)
- Autoregressive Models as Normalizing Flow Models
- Case Study: Probability density distillation for efficient learning and inference in Parallel Wavenet
Designing invertible transformations

- NICE or Nonlinear Independent Components Estimation (Dinh et al., 2014) composes two kinds of invertible transformations: additive coupling layers and rescaling layers
- Real-NVP (Dinh et al., 2017)
- Inverse Autoregressive Flow (Kingma et al., 2016)
- Masked Autoregressive Flow (Papamakarios et al., 2017)
Partition the variables \mathbf{z} into two disjoint subsets, say $\mathbf{z}_{1:d}$ and $\mathbf{z}_{d+1:n}$ for any $1 \leq d < n$

- **Forward mapping** $\mathbf{z} \mapsto \mathbf{x}$:
 - $\mathbf{x}_{1:d} = \mathbf{z}_{1:d}$ (identity transformation)
 - $\mathbf{x}_{d+1:n} = \mathbf{z}_{d+1:n} + m_\theta(\mathbf{z}_{1:d})$ ($m_\theta(\cdot)$ is a neural network with parameters θ, d input units, and $n - d$ output units)

- **Inverse mapping** $\mathbf{x} \mapsto \mathbf{z}$:
 - $\mathbf{z}_{1:d} = \mathbf{x}_{1:d}$ (identity transformation)
 - $\mathbf{z}_{d+1:n} = \mathbf{x}_{d+1:n} - m_\theta(\mathbf{x}_{1:d})$

- **Jacobian of forward mapping**:
 \[
 J = \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \begin{pmatrix} I_d & 0 \\ \frac{\partial \mathbf{x}_{d+1:n}}{\partial \mathbf{z}_{1:d}} & I_{n-d} \end{pmatrix}
 \]
 \[
 \det(J) = 1
 \]

 Volume preserving transformation since determinant is 1.
NICE - Rescaling layers

- Additive coupling layers are composed together (with arbitrary partitions of variables in each layer)
- Final layer of NICE applies a rescaling transformation
- Forward mapping \(z \mapsto x \):
 \[
 x_i = s_i z_i
 \]
 where \(s_i > 0 \) is the scaling factor for the \(i \)-th dimension.
- Inverse mapping \(x \mapsto z \):
 \[
 z_i = \frac{x_i}{s_i}
 \]
- Jacobian of forward mapping:
 \[
 J = \text{diag}(s)
 \]
 \[
 \det(J) = \prod_{i=1}^{n} s_i
 \]
Samples generated via NICE

(a) Model trained on MNIST

(b) Model trained on TFD
Samples generated via NICE

(c) Model trained on SVHN

(d) Model trained on CIFAR-10
Real-NVP: Non-volume preserving extension of NICE

- **Forward mapping** $z \mapsto x$:
 - $x_{1:d} = z_{1:d}$ (identity transformation)
 - $x_{d+1:n} = z_{d+1:n} \odot \exp(\alpha_\theta(z_{1:d})) + \mu_\theta(z_{1:d})$
 - $\mu_\theta(\cdot)$ and $\alpha_\theta(\cdot)$ are both neural networks with parameters θ, d input units, and $n - d$ output units [\odot: elementwise product]

- **Inverse mapping** $x \mapsto z$:
 - $z_{1:d} = x_{1:d}$ (identity transformation)
 - $z_{d+1:n} = (x_{d+1:n} - \mu_\theta(x_{1:d})) \odot \exp(-\alpha_\theta(x_{1:d}))$

- **Jacobian of forward mapping**:
 \[
 J = \frac{\partial x}{\partial z} = \begin{pmatrix}
 I_d & 0 \\
 \frac{\partial x_{d+1:n}}{\partial z_{1:d}} & \text{diag}(\exp(\alpha_\theta(z_{1:d})))
 \end{pmatrix}
 \]
 \[
 \det(J) = \prod_{i=d+1}^{n} \exp(\alpha_\theta(z_{1:d})_i) = \exp \left(\sum_{i=d+1}^{n} \alpha_\theta(z_{1:d})_i \right)
 \]

- **Non-volume preserving transformation** in general since determinant can be less than or greater than 1
Samples generated via Real-NVP
Using with four validation examples \(z^{(1)}, z^{(2)}, z^{(3)}, z^{(4)} \), define interpolated \(z \) as:

\[
 z = \cos \phi (z^{(1)} \cos \phi' + z^{(2)} \sin \phi') + \sin \phi (z^{(3)} \cos \phi' + z^{(4)} \sin \phi')
\]

with manifold parameterized by \(\phi \) and \(\phi' \).
Autoregressive models as flow models

- Consider a Gaussian autoregressive model:

\[p(x) = \prod_{i=1}^{n} p(x_i|x_{<i}) \]

such that \(p(x_i | x_{<i}) = \mathcal{N}(\mu_i(x_1, \cdots, x_{i-1}), \exp(\alpha_i(x_1, \cdots, x_{i-1}))^2) \).

Here, \(\mu_i(\cdot) \) and \(\alpha_i(\cdot) \) are neural networks for \(i > 1 \) and constants for \(i = 1 \).

- Sampler for this model:
 - Sample \(z_i \sim \mathcal{N}(0, 1) \) for \(i = 1, \cdots, n \)
 - Let \(x_1 = \exp(\alpha_1)z_1 + \mu_1 \). Compute \(\mu_2(x_1), \alpha_2(x_1) \)
 - Let \(x_2 = \exp(\alpha_2)z_2 + \mu_2 \). Compute \(\mu_3(x_1, x_2), \alpha_3(x_1, x_2) \)
 - Let \(x_3 = \exp(\alpha_3)z_3 + \mu_3 \). ...

- Flow interpretation: transforms samples from the standard Gaussian \((z_1, z_2, \ldots, z_n) \) to those generated from the model \((x_1, x_2, \ldots, x_n) \) via invertible transformations (parameterized by \(\mu_i(\cdot), \alpha_i(\cdot) \)).
Masked Autoregressive Flow (MAF)

- Forward mapping from $\mathbf{z} \mapsto \mathbf{x}$:
 - Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$. Compute $\mu_2(x_1), \alpha_2(x_1)$
 - Let $x_2 = \exp(\alpha_2)z_2 + \mu_2$. Compute $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$

- Sampling is sequential and slow (like autoregressive): $O(n)$ time

Figure adapted from Eric Jang’s blog
Masked Autoregressive Flow (MAF)

- Inverse mapping from \(x \mapsto z \):
 - Compute all \(\mu_i, \alpha_i \) (can be done in parallel using e.g., MADE)
 - Let \(z_1 = (x_1 - \mu_1) / \exp(-\alpha_1) \) (scale and shift)
 - Let \(z_2 = (x_2 - \mu_2) / \exp(-\alpha_2) \)
 - Let \(z_3 = (x_3 - \mu_3) / \exp(-\alpha_3) \) ...

- Jacobian is lower diagonal, hence determinant can be computed efficiently

- Likelihood evaluation is easy and parallelizable (like MADE)

Figure adapted from Eric Jang’s blog
Inverse Autoregressive Flow (IAF)

- Forward mapping from $\mathbf{z} \mapsto \mathbf{x}$ (parallel):
 - Sample $z_i \sim \mathcal{N}(0,1)$ for $i = 1, \cdots, n$
 - Compute all μ_i, α_i (can be done in parallel)
 - Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$
 - Let $x_2 = \exp(\alpha_2)z_2 + \mu_2$...

- Inverse mapping from $\mathbf{x} \mapsto \mathbf{z}$ (sequential):
 - Let $z_1 = (x_1 - \mu_1)/\exp(\alpha_1)$. Compute $\mu_2(z_1), \alpha_2(z_1)$
 - Let $z_2 = (x_2 - \mu_2)/\exp(\alpha_2)$. Compute $\mu_3(z_1, z_2), \alpha_3(z_1, z_2)$
 - Fast to sample from, slow to evaluate likelihoods of data points (train)
 - Note: Fast to evaluate likelihoods of a generated point (cache z_1, z_2, \cdots, z_n)

Figure adapted from Eric Jang’s blog
IAF is inverse of MAF

Interchanging z and x in the inverse transformation of MAF gives the forward transformation of IAF.

Similarly, forward transformation of MAF is inverse transformation of IAF.

Figure adapted from Eric Jang’s blog
Computational tradeoffs
- MAF: Fast likelihood evaluation, slow sampling
- IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation
IAF more suited for real-time generation
Can we get the best of both worlds?
Parallel Wavenet

- Two part training with a teacher and student model
- Teacher is parameterized by MAF. Teacher can be efficiently trained via MLE
- Once teacher is trained, initialize a student model parameterized by IAF. Student model cannot efficiently evaluate density for external datapoints but allows for efficient sampling
- **Key observation**: IAF can also efficiently evaluate densities of its own generations (via caching the noise variates z_1, z_2, \ldots, z_n)
Probability density distillation: Student distribution is trained to minimize the KL divergence between student (s) and teacher (t)

\[
D_{\text{KL}}(s, t) = E_{x \sim s} [\log s(x) - \log t(x)]
\]

Evaluating and optimizing Monte Carlo estimates of this objective requires:
- Samples \(x \) from student model (IAF)
- Density of \(x \) assigned by student model
- Density of \(x \) assigned by teacher model (MAF)
- All operations above can be implemented efficiently
Parallel Wavenet: Overall algorithm

- **Training**
 - Step 1: Train teacher model (MAF) via MLE
 - Step 2: Train student model (IAF) to minimize KL divergence with teacher

- **Test-time**: Use student model for testing

- Improves sampling efficiency over original Wavenet (vanilla autoregressive model) by 1000x!
Transform simple distributions into more complex distributions via change of variables

Jacobian of transformations should have tractable determinant for efficient learning and density estimation

Computational tradeoffs in evaluating forward and inverse transformations