Generative Adversarial Networks

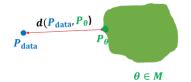
Stefano Ermon

Stanford University

Lecture 9

Stefano Ermon (AI Lab)

 $\mathbf{x}_i \sim \mathbf{P}_{\text{data}}$ $\mathbf{i} = \mathbf{1}, \mathbf{2}, \dots, \mathbf{n}$



- Model families
 - Autoregressive Models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Variational Autoencoders: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$

• Normalizing Flow Models: $p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial f_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$

• All the above families are trained by minimizing KL divergence $D_{KL}(p_{\text{data}} || p_{\theta})$, or equivalently maximizing likelihoods (or approximations)

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{M} \log p_{\theta}(\mathbf{x}_i), \quad \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_M \sim p_{\mathsf{data}}(\mathbf{x})$$

• Optimal statistical efficiency.

- Assume sufficient model capacity, such that there exists a unique $\theta^* \in \mathcal{M}$ that satisfies $p_{\theta^*} = p_{data}$.
- The convergence of $\hat{\theta}$ to θ^* when $M \to \infty$ is the "fastest" among all statistical methods when using maximum likelihood training.
- Higher likelihood = better lossless compression.
- Is the likelihood a good indicator of the quality of samples generated by the model?

- Case 1: Optimal generative model will give best sample quality and highest test log-likelihood
- For imperfect models, achieving high log-likelihoods might not always imply good sample quality, and vice-versa (Theis et al., 2016)

Towards likelihood-free learning

- Case 2: Great test log-likelihoods, poor samples. E.g., For a discrete noise mixture model p_θ(x) = 0.01p_{data}(x) + 0.99p_{noise}(x)
 - 99% of the samples are just noise (most samples are poor)
 - Taking logs, we get a lower bound

$$egin{aligned} \log p_{ heta}(\mathbf{x}) &= \log[0.01 p_{ ext{data}}(\mathbf{x}) + 0.99 p_{ ext{noise}}(\mathbf{x})] \ &\geq \log 0.01 p_{ ext{data}}(\mathbf{x}) &= \log p_{ ext{data}}(\mathbf{x}) - \log 100 \end{aligned}$$

- For expected log-likelihoods, we know that
 - Lower bound

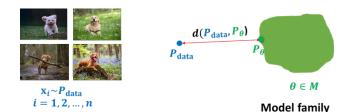
$$E_{
ho_{ ext{data}}}[\log p_{ heta}(\mathbf{x})] \geq E_{
ho_{ ext{data}}}[\log p_{ ext{data}}(\mathbf{x})] - \log 100$$

• Upper bound (via non-negativity of $D_{{\it KL}}(p_{
m data}\|p_{ heta})\geq 0)$

$$E_{p_{ ext{data}}}[\log p_{ ext{data}}(\mathbf{x}))] \geq E_{p_{ ext{data}}}[\log p_{ heta}(\mathbf{x})]$$

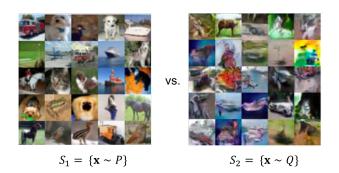
• As we increase the dimension *n* of $\mathbf{x} = (x_1, \dots, x_n)$, absolute value of $\log p_{\text{data}}(\mathbf{x}) = \sum_{i=1}^{n} \log p_{\theta}(x_i | \mathbf{x}_{< i})$ increases proportionally to *n* but log 100 remains constant. Hence, likelihoods are great $E_{p_{\text{data}}}[\log p_{\theta}(\mathbf{x})] \approx E_{p_{\text{data}}}[\log p_{\text{data}}(\mathbf{x})]$ in very high dimensions

- Case 3: Great samples, poor test log-likelihoods. E.g., Memorizing training set
 - Samples look exactly like the training set (cannot do better!)
 - Test set will have zero probability assigned (cannot do worse!)
- The above cases suggest that it might be useful to disentangle likelihoods and sample quality
- Likelihood-free learning consider alternative training objectives that do not depend directly on a likelihood function



- Model families
 - Autoregressive Models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Variational Autoencoders: $p_{ heta}(\mathbf{x}) = \int p_{ heta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$
 - Normalizing Flow Models: $p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial f_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$
- All the above families are trained by minimizing KL divergence $d_{KL}(p_{\text{data}} || p_{\theta})$, or equivalently maximizing likelihoods (or approximations)
- Today: alternative choices for $d(p_{\text{data}} \| p_{ heta})$

Comparing distributions via samples



Given a finite set of samples from two distributions $S_1 = \{\mathbf{x} \sim P\}$ and $S_2 = \{\mathbf{x} \sim Q\}$, how can we tell if these samples are from the same distribution? (i.e., P = Q?)

• Given $S_1 = {\mathbf{x} \sim P}$ and $S_2 = {\mathbf{x} \sim Q}$, a two-sample test considers the following hypotheses

- Null hypothesis H_0 : P = Q
- Alternative hypothesis H_1 : $P \neq Q$
- Test statistic T compares S_1 and S_2 . For example: difference in means, variances of the two sets of samples

•
$$T(S_1, S_2) = \left| \frac{1}{|S_1|} \sum_{x \in S_1} x - \frac{1}{|S_2|} \sum_{x \in S_2} x \right|$$

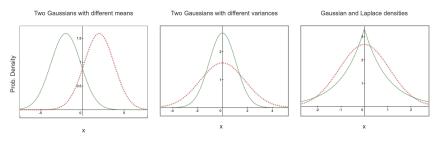
- If *T* is larger than a threshold α, then reject H₀ otherwise we say H₀ is consistent with observation.
- Key observation: Test statistic is likelihood-free since it does not involve the densities *P* or *Q* (only samples)

Generative modeling and two-sample tests

- A priori we assume direct access to $S_1 = \mathcal{D} = \{\mathbf{x} \sim p_{\mathrm{data}}\}$
- In addition, we have a model distribution p_{θ}
- Assume that the model distribution permits efficient sampling (e.g., directed models). Let $S_2 = \{\mathbf{x} \sim p_{\theta}\}$
- Alternative notion of distance between distributions: Train the generative model to minimize a two-sample test objective between S_1 and S_2

Two-Sample Test via a Discriminator

• Finding a good two-sample test objective in high dimensions is hard



- In the generative model setup, we know that S_1 and S_2 come from different distributions p_{data} and p_{θ} respectively
- Key idea: Learn a statistic to automatically identify in what way the two sets of samples S₁ and S₂ differ from each other
- How? Train a classifier (called a discriminator)!

Two-Sample Test via a Discriminator

- Any binary classifier D_{ϕ} (e.g., neural network) which tries to distinguish "real" (y = 1) samples from the dataset and "fake" (y = 0) samples generated from the model
- Test statistic: -loss of the classifier. Low loss, real and fake samples are easy to distinguish (different). High loss, real and fake samples are hard to distinguish (similar).
- Goal: Maximize the two-sample test statistic (in support of the alternative hypothesis $p_{\rm data} \neq p_{\theta}$), or equivalently minimize classification loss

Two-Sample Test via a Discriminator

• Training objective for discriminator:

$$egin{aligned} \max_{D_{\phi}} V(p_{ heta}, D_{\phi}) &= & E_{\mathbf{x} \sim p_{ ext{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{x} \sim p_{ heta}}[\log(1 - D_{\phi}(\mathbf{x}))] \ &pprox & & \sum_{\mathbf{x} \in \mathcal{S}_1} \log D_{\phi}(\mathbf{x}) + \sum_{\mathbf{x} \in \mathcal{S}_2}[\log(1 - D_{\phi}(\mathbf{x}))] \end{aligned}$$

- For a fixed generative model p_{θ} , the discriminator is performing binary classification with the cross entropy objective
 - Assign probability 1 to true data points $\mathbf{x} \sim p_{\mathrm{data}}$ (in set S_1)
 - Assign probability 0 to fake samples $\mathbf{x} \sim p_{\theta}$ (in set S_2)
- Optimal discriminator

$$D^*_ heta(\mathbf{x}) = rac{
ho_{ ext{data}}(\mathbf{x})}{
ho_{ ext{data}}(\mathbf{x}) +
ho_ heta(\mathbf{x})}$$

• Sanity check: if $p_{ heta} = p_{\text{data}}$, classifier cannot do better than chance $(D^*_{ heta}(\mathbf{x}) = 1/2)$

Generative Adversarial Networks

• A two player minimax game between a **generator** and a **discriminator**

Generator

- Directed, latent variable model with a deterministic mapping between z and x given by G_{θ}
 - Sample $z \sim p(z)$, where p(z) is a simple prior, e.g. Gaussian

• Set
$$\mathbf{x} = G_{\theta}(\mathbf{z})$$

- Similar to a flow model, but mapping G_{θ} need not be invertible
- Distribution over $p_{\theta}(\mathbf{x})$ over \mathbf{x} is implicitly defined (no likelihood!)
- Minimizes a two-sample test objective (in support of the null hypothesis $p_{\rm data} = p_{\theta}$)

Example of GAN objective

• Training objective for generator:

$$\min_{G} \max_{D} V(G, D) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D(\mathbf{x})] + E_{\mathbf{x} \sim p_{G}}[\log(1 - D(\mathbf{x}))]$$

• For the optimal discriminator $D^*_{\mathcal{G}}(\cdot)$, we have

$$V(G, D_{G}^{*}(\mathbf{x}))$$

$$= E_{\mathbf{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})} \right] + E_{\mathbf{x} \sim p_{G}} \left[\log \frac{p_{G}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})} \right]$$

$$= E_{\mathbf{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{\frac{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})}{2}} \right] + E_{\mathbf{x} \sim p_{G}} \left[\log \frac{p_{G}(\mathbf{x})}{\frac{p_{\text{data}}(\mathbf{x}) + p_{G}(\mathbf{x})}{2}} \right] - \log 4$$

$$= \underbrace{D_{KL} \left[p_{\text{data}}, \frac{p_{\text{data}} + p_{G}}{2} \right] + D_{KL} \left[p_{G}, \frac{p_{\text{data}} + p_{G}}{2} \right]}_{2 \times \text{Jensen-Shannon Divergence (JSD)}} - \log 4$$

Jenson-Shannon Divergence

• Also called as the symmetric KL divergence

$$D_{JSD}[p,q] = rac{1}{2} \left(D_{KL}\left[p,rac{p+q}{2}
ight] + D_{KL}\left[q,rac{p+q}{2}
ight]
ight)$$

- Properties
 - $D_{JSD}[p,q] \ge 0$
 - $D_{JSD}[p,q] = 0$ iff p = q
 - $D_{JSD}[p,q] = D_{JSD}[q,p]$
 - $\sqrt{D_{JSD}[p,q]}$ satisfies triangle inequality ightarrow Jenson-Shannon Distance
- Optimal generator for the JSD/Negative Cross Entropy GAN

$$p_G = p_{\text{data}}$$

• For the optimal discriminator $D^*_{G^*}(\cdot)$ and generator $G^*(\cdot)$, we have

$$V(G^*, D^*_{G^*}(\mathbf{x})) = -\log 4$$

Recap of GANs



- Choose $d(p_{\mathrm{data}}, p_{ heta})$ to be a two-sample test statistic
 - Learn the statistic by training a classifier (discriminator)
 - Under ideal conditions, equivalent to choosing $d(p_{data}, p_{\theta})$ to be $D_{JSD}[p_{data}, p_{\theta}]$
- Pros:
 - Loss only requires samples from p_{θ} . No likelihood needed!
 - Lots of flexibility for the neural network architecture, any G_{θ} defines a valid sampling procedure
 - Fast sampling (single forward pass)
- Cons: very difficult to train in practice

The GAN training algorithm

- Sample minibatch of *m* training points $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}$ from \mathcal{D}
- Sample minibatch of *m* noise vectors $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(m)}$ from p_z
- Update the discriminator parameters ϕ by stochastic gradient ascent

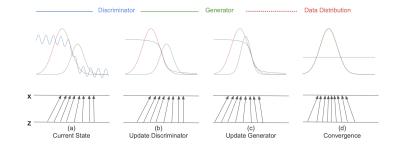
$$abla_{\phi} V(G_{ heta}, D_{\phi}) = rac{1}{m}
abla_{\phi} \sum_{i=1}^{m} [\log D_{\phi}(\mathbf{x}^{(i)}) + \log(1 - D_{\phi}(G_{ heta}(\mathbf{z}^{(i)})))]$$

• Update the generator parameters θ by stochastic gradient **descent**

$$abla_{ heta} V(G_{ heta}, D_{\phi}) = rac{1}{m}
abla_{ heta} \sum_{i=1}^m \log(1 - D_{\phi}(G_{ heta}(\mathbf{z}^{(i)})))$$

• Repeat for fixed number of epochs

$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = E_{\mathbf{x} \sim p_{\text{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{z} \sim p(\mathbf{z})}[\log(1 - D_{\phi}(G_{\theta}(\mathbf{z})))]$



Which one is real?

Source: Karras et al., 2018; The New York Times

Both images are generated via GANs!

Frontiers in GAN research

2014

2016

2018

- GANs have been successfully applied to several domains and tasks
- However, working with GANs can be very challenging in practice
 - Unstable optimization
 - Mode collapse
 - Evaluation
- Bag of tricks needed to train GANs successfully

Image Source: Ian Goodfellow. Samples from Goodfellow et al., 2014, Radford et al., 2015, Liu et al., 2016, Karras et al., 2017, Karras et al., 2018

Deep Generative Models

Optimization challenges

- **Theorem (informal):** If the generator updates are made in function space and discriminator is optimal at every step, then the generator is guaranteed to converge to the data distribution
- Unrealistic assumptions!
- In practice, the generator and discriminator loss keeps oscillating during GAN training



Source: Mirantha Jayathilaka

• No robust stopping criteria in practice (unlike MLE)

Deep Generative Models

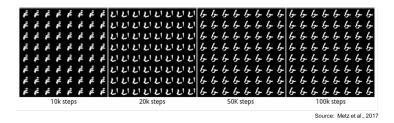
- GANs are notorious for suffering from mode collapse
- Intuitively, this refers to the phenomena where the generator of a GAN collapses to one or few samples (dubbed as "modes")

Arjovsky et al., 2017

23/1

• True distribution is a mixture of Gaussians

• The generator distribution keeps oscillating between different modes



- Fixes to mode collapse are mostly empirically driven: alternative architectures, alternative GAN loss, adding regularization terms, etc.
- https://github.com/soumith/ganhacks How to Train a GAN? Tips and tricks to make GANs work by Soumith Chintala

Beauty lies in the eyes of the discriminator

Source: Robbie Barrat, Obvious

GAN generated art auctioned at Christie's. **Expected Price:** \$7,000 - \$10,000 **True Price:** \$432,500

Stefano Ermon (AI Lab)