Weakly Supervised Disentanglement with Guarantees

Rui Shu

Joint work with Yining Chen, Abhishek Kumar, Stefano Ermon, Ben Poole
Why

Decompose data into a set of underlying **human-interpretable** factors of variation

Explainable models

What is in the scene?

Controllable generation

Generate a red ball instead
How: Fully-Supervised

Strategy: Label everything

- {dark blue wall, green floor, green oval}
- {green wall, red floor, green cylinder}
- {red wall, green floor, pink ball}

Controllable generation as **label-conditional generative modeling**

- green wall, red floor, blue cylinder
How: Fully-Supervised

Problem: Some things are hard to label

What kind of hairstyle?

What kind of glasses?

Generate this guy with this hair
How: Unsupervised?

Strategy: Exploit statistical independence assumption + neural net magic

Swivel the chair

Beta-VAE

TC-VAE

FactorVAE
How: Unsupervised?

Problem: Is statistical independence assumption + neural net magic enough?

Z₁: Shape

Z₂: Shading

Mean) are correlated. (ii) We do not find any evidence that the considered models can be used to reliably learn disentangled representations in an *unsupervised* manner as random seeds and hyperparameters seem to matter more than the model choice. Furthermore, good trained models seemingly cannot be identified without access to ground-truth labels even if we are allowed to transfer good hyperparameter values across data sets. (iii) For
How: Weakly Supervised

Strategy: Leverage “weak” supervision when possible
How: Weakly Supervised

Restricted Labeling: Label what we can

![Diagram with labeled objects: Pink wall, Purple ball, Green floor, and a size symbol.]
How: Weakly Supervised

Match Pairing: Find pairs with known similarities

Real world data: direct intervention to share / change certain factors

Same ground color
How: Weakly Supervised

Rank Pairing: Compare pairs

\[s_I, s_{\bar{I}} \]

\[s_I, s_{\bar{I}} \]

\[x, y, x' \]

Which is bigger?
The Plan

1. **Definitions**: Decompose disentanglement into:
 a. Consistency
 b. Restrictiveness

2. **Guarantees**: Prove whether weak supervision guarantees consistency, restrictiveness, or both

Departure from existing literature: no end-to-end theoretical framework of disentanglement
Definitions

Disentangle: What does it mean when I say Z1 disentangles size?

1. When \(z_1 \) is fixed, is size fixed?
2. When we only change \(z_1 \), does only size change?
Definitions

Disentangle: What does it mean when I say Z1 disentangles size?

1. When z_1 is fixed, is size fixed? (**Consistency**)
2. When we only change z_1, does only size change? (**Restrictiveness**)

(a) Disentanglement (b) Consistency (c) Restrictiveness
Definitions: Consistency

When Z_I is fixed, S_I is fixed

Oracle encoder

Generative model

$$\mathbb{E}_{p_I} \left\| e_I^* \circ g(z_I, z_{\setminus I}) - e_I^* \circ g(z_I, z'_{\setminus I}) \right\|^2 = 0$$

$z_I \sim p(z_I)$

$z_{\setminus I}, z'_{\setminus I} \sim p(z_{\setminus I} \mid z_I).$

Perturbation-based generation
Definitions: Restrictiveness

When only Z_I is changed, only S_I is changed.

Equivalently: when Z_I is fixed, S_I is fixed.
Definitions: Disentanglement

\[D(I) := C(I) \land R(I) \]

\(Z_I \) is consistent and restricted to \(S_I \)
Consistency versus Restrictiveness

When only Z_I is changed, only S_I is changed

Equivalently: when $Z_{\bar{I}}$ is fixed, $S_{\bar{I}}$ is fixed

$C(I) \iff R(\setminus I)$
Consistency versus Restrictiveness

\[R(I) \iff C(I) \]

\[C(I) \iff R(I) \]
Consistency Union:
If fixing Z_I fixes S_I
and fixing Z_J fixes S_J
then fixing (Z_I, Z_J) fixes (S_I, S_J)

Restrictiveness Union:
If changing Z_I changes only S_I
and changing Z_J changes only S_J
then changing (Z_I, Z_J) changes only (S_I, S_J)

\[C(I) \land C(J) \implies C(I \cup J)\]

\[R(I) \land R(J) \implies R(I \cup J)\]
Intersection Rules

Consistency Intersection:
If fixing Z_I fixes S_I
and fixing Z_J fixes S_J
then fixing Z_V fixes S_V

\[C(I) \land C(J) \implies C(I \cap J) \]

Restrictiveness Intersection:
If changing Z_I changes only S_I
and changing Z_J changes only S_J
then changing Z_V changes only S_V

\[R(I) \land R(J) \implies R(I \cap J) \]
Disentanglement Rule

Disentanglement via Consistency

Consistency on all factors implies disentanglement on all factors

\[\bigwedge_{i=1}^{n} C(i) \iff \bigwedge_{i=1}^{n} D(i) \]

Disentanglement via Restrictiveness

Restrictiveness on all factors implies disentanglement on all factors

\[\bigwedge_{i=1}^{n} R(i) \iff \bigwedge_{i=1}^{n} D(i) \]
Summary of Rules

Consistency and Restrictiveness
\[C(I) \iff R(I) \quad R(I) \iff C(I) \quad C(I) \iff R(\setminus I) \]

Union Rules
\[C(I) \land C(J) \implies C(I \cup J) \quad R(I) \land R(J) \implies R(I \cup J) \]

Intersection Rules
\[C(I) \land C(J) \implies C(I \cap J) \quad R(I) \land R(J) \implies R(I \cap J) \]

Full Disentanglement
\[\bigwedge_{i=1}^{n} C(i) \iff \bigwedge_{i=1}^{n} D(i) \quad \bigwedge_{i=1}^{n} R(i) \iff \bigwedge_{i=1}^{n} D(i) \]
Summary of Rules

Consistency and Restrictiveness

\[C(I) \iff R(I) \quad R(I) \iff C(I) \quad C(I) \iff R(\setminus I) \]

Union Rules

\[C(I) \wedge C(J) \implies C(I \cup J) \quad R(I) \wedge R(J) \implies R(I \cup J) \]

Intersection Rules

\[C(I) \wedge C(J) \implies C(I \cap J) \quad R(I) \wedge R(J) \implies R(I \cap J) \]

Full Disentanglement

\[\bigwedge_{i=1}^{n} C(i) \iff \bigwedge_{i=1}^{n} D(i) \quad \bigwedge_{i=1}^{n} R(i) \iff \bigwedge_{i=1}^{n} D(i) \]
Strategy for Disentanglement

Dataset 1 \rightarrow C(1)
Dataset 2 \rightarrow C(2)
...
Dataset n \rightarrow C(n)

Using datasets together (+ right algorithm) guarantees full disentanglement
Restricted Labeling Guarantees Consistency

\[Z_I \text{ will be consistent with } S_I \]
Match Pairing Guarantees Consistency

Z_I will be consistent with S_I
Rank Pairing Guarantees Consistency

\[s' \mid i \quad s \mid i \quad s' \mid i \quad s' \]

\[x \quad y \quad x' \]

Distribution Match

\[z' \mid i \quad z \mid i \quad z' \mid i \quad z' \]

\[x \quad y \quad x' \]

\[Z_i \text{ will be consistent with } S_i \]
Theorem 1. Given any oracle \((p^*(s), g^*, e^*) \in \mathcal{H}\), consider the distribution-matching algorithm \(A\) that selects a model \((p(z), g, e) \in \mathcal{H}\) such that:

1. \((g^*(S), S_I) \overset{d}{=} (g(Z), Z_I)\) (Restricted Labeling); or

2. \(\left(g^*(S_I, S'_I), g^*(S_I, S'_I)\right) \overset{d}{=} \left(g(Z_I, Z'_I), g(Z_I, Z'_I)\right)\) (Match Pairing); or

3. \((g^*(S), g^*(S'), 1 \{S_I \leq S'_I\}) \overset{d}{=} (g(Z), g(Z'), 1 \{Z_I \leq Z'_I\})\) (Rank Pairing).

Then the latent variable \(Z_I\) from the learned generative model \((p(z), g)\) will be consistent with the factor of variation \(S_I\).
Targeted Consistency / Restrictiveness

Generative model trained via restricted labeling at S_5

Evaluated model on consistency of Z_0 vs S_0
Targeted Consistency / Restrictiveness

Consistency: Restricted Labeling
Consistency: Match Pairing (Share 1 factor)
Restrictiveness: Match Pairing (Change 1 factor)
Consistency: Rank pairing
Restrictiveness: Intersection
Consistency versus Restrictiveness

- Models trained to guarantee only consistency or restrictiveness of one factor
- Strong correlation of consistency vs restrictiveness
Digression: Style-Content Disentanglement

Unobserved style
y
z

Observed class label
x

Only content-consistency is guaranteed
Style-content disentanglement not guaranteed (but due to neural net magic)
Full Disentanglement
Full Disentanglement: Visualizations

- Visualize multiple rows of single-factor ablation
- Check for consistency and restrictiveness
Full Disentanglement: Visualizations

- Visualize multiple rows of single-factor ablation
- Check for consistency and restrictiveness

Ground truth factors: floor color, wall color, object color, object size, object type, and azimuth.
Full Disentanglement: Visualizations

- Visualize multiple rows of single-factor ablation
- Check for consistency and restrictiveness

Ground truth factor: object size

Ground truth factor: wall color
Conclusions

- Definitions for disentanglement
- A calculus of disentanglement
- Analyzed weak supervision methods
- Demonstrated guarantees empirically
Conclusions

- Definitions for disentanglement
- A calculus of disentanglement
- Analyzed weak supervision methods
- Demonstrated guarantees empirically

- Better definitions?
- Do new definitions preserve calculus?
- Analyze other weak supervision methods?
- Cost of weak supervision in real world?
Assumption: $X \rightarrow S$ is deterministic
Questions?

Entangled

Disentangled

ruishu@stanford.edu
@_smileyball
@smiley_.ball